如图,△ABC和△DEF是两个格点三角形.你能否将他们 作业帮
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:04:14
证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)
两三角形相似,相似定理得:△DEF的周长=△ABC周长/(AB/DE)=36/3=12△DEF的面积=△ABC面积/[(AB/DE)²]=36/(3²)=4楼下你分析的对的,但是你
如图.△ABM≌△DEN△CBM≌△DFN再问:第二题呢再答:∵AB=√(4^2+4^2)=4√2DE=√(4^2+4^2)=4√2AM=√(4^2+1^2)=√19DN=√(4^2+1^2)=√19
是1:2设圆的半径为R,则外正三角形的高为3R,内三角形的高为3/2R(3/2):3=1:2再问:我算起来也是1:2,为什么答案上是1:4啊再答:1:2是相似线段的比例,1:4是面积的比例再问:肯定是
如果用初中的做法的话,如下:经过仔细推敲,暂时未发现证明过程有问题
AB//EDAB=EDBC//DFBC=DF过B作EF的平行线交AC于G,过D作AC的平行线交EF于H对应三角形对应边相互平行,所以相似因为有一个边长度相等,所以全等
我很郁闷..图在哪里..
DEF是由△ABC沿AB所在直线(平移)而得到,则△DEF(≌)△ABC,它们的对应边是(AB和DE,AC和DF,BC和EF)
大哥啊,EF在哪再问:发错了,下面才是再答:您老要求证什么啊,如果是求证BC=EF,那么∵△ABC≌△DEF∴BC=EF
如图所示:△DEF即为所求.再问:???
如图.△ABM≌△DEN△CBM≌△DFN∵AB=√(4^2+4^2)=4√2DE=√(4^2+4^2)=4√2AM=√(4^2+1^2)=√19DN=√(4^2+1^2)=√19BM=3,EN=3∴
平行四边形,BC//EF,BC=EF,易证四边形BEFC为平行四边形,易得CF//BE即CF//BD,且CF=BE,又由题意易得CF=BD,推出四边形CDBF为平行四边形.
如图,过C、F点分别做△ABC、△DEF的高h1和h2∵△DEF沿线段AB向右平移∴CF=AD∵D为AB的中点∴AD=DB → CF=DB …… ①∵△ABC≌
∵ΔABC≌ΔDEF,∴对应边:AB与DE,AC与DF,BC与EF,对应角:∠A=∠D,∠B与∠DEF,∠ACB与∠F.
分过bd点做垂线再答:不用客气
设腰长为a(1)y=x*x(0≤x≤√2/2*a)(2)y=(√2*a-x)*(√2*a-x)(√2/2*a≤x≤√2*a)(3)y=0(x≥√2*a)就这三个方程表示的曲线吧,晕死了手机打的累人啊
BF=8*根号3/3或4*根号3再问:过程
(1)若以∠ACB=∠DFE得出△ABC≡△DEF,依据是AAS角、角、边(2)若以BC=EF得出△ABC≡△DEF,依据是SAS边角边(3)若以∠A=∠D得出△ABC≡△DEF,依据是ASA角边角(
(1)∵△ABC为等腰直角三角形∴AB=AC∠B=∠C∵AP=AQ∴AP-AB=AC-AQ即BA=CQ∵E为BC中点∴BA=CE∴在△BPE和△CQE中∵BP=CQ∠B=∠CBE=CE∴△BPE=△C