如图,△ABC是等边三角形,BD=AB,BD与AC交于点E,当点E在AC上运动时
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:09:48
相似.因为△AA'C'全等于△BB'A'全等于△CC'B',所以A'B'=B'C'=A'C'所以△A'B'C'是等边三角形,△A'B'C'与△ABC对应角相等(都等于60度),所以△A'B'C'与△A
,△ABC为RT∠B=30°,D是AB的中点所以DC=AC角A=角ADc所以角A=60度=角ADc所以:△ACD是等边三角形
证明:∵△ABC和△ADE是等边三角形(已知),∴AB=AC,AD=AE,∠BAC=∠DAE=60°(等边三角形的性质).∴∠BAD=∠CAE(等式的性质).在△BAD与△CAE中,∵AB=AC∠BA
延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN
是因为ABC为等边三角形所以AB=BC=AC且三个角相等因为A'A=B'B=C'C所以A'A+AC=B'B+BA=C'C+CB即A'C=B'A=C'B因为B'B=A'A=C'C∠B'BC'=∠A'AB
证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°
∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,又∵∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.再问:可以再具体些
在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形
解:因为三角形DEF是等边三角形所以角D=角E=角F又因为角1=角2=角3角ACD=180-角D-角2同理可知角eab=角dca=角fbc因为角cab=180-角2-角eab同理可知角cab=角abc
证明:(1)∵△ABC、△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE,∴△BAD≌△CAE,∴BD
因为在等边三角形abc中ab=ac,角bac=60°又因为在等边三角形ade中ad=ae,角dae=60°所以角bac-角dac=角dae-角dac即角bad=角cae所以在三角形bad和三角形cae
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
证明:∵△ABC、△ECD都是等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°,在△BCE和△ACD中,BC=AC∠ECD=∠ACBEC=DC,∴△BCE≌△ACD(SAS),∴AD=
因为△ABC和△CDE都是等边三角形所以AC=BC;CD=CE角ACB=角DCE=60度有角ACD=角BCE△ACD和△BCE全等(两边与之一夹角都相等的三角形全等)故AD=BE
证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°,∴∠BAE=∠BAD=30°,在△ABE和△ABD中,AE=AD∠B
图嘞?没有话,把各个点的位置说明白也行!再问:hyj再答:利用题中已知条件,可证明△ACD≌△CBF(利用边角边证明即可)又∵四边形CDEF是平行四边形∴AD=CF=DE∠FCB=∠EDB=∠FED∵
AD、BE、CF是等边三角形ABC的角平分线,又由等边三角形四线合一(中线,角平分线,中垂线,高线),所以D,E,F为中点,那么DE,DF,EF为中位线,又因为AB=AC=BC所以DE=DF=EF.即
(1)∵点P的运动速度为1cm/s,点Q的运动速度为2cm/s∴AP=t,BQ=2t∴BP=6-t∵t=2∴BP=6-2=4,BQ=2×2=4∴BP=BQ∴△BPQ为等腰三角形又∵在等边三角形ABC中
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
∠CBA=∠CED+∠CDE=2∠CED所以∠CED=30度,所以EF=2分之根号3,所以DE为根号3CF^2=CE^2-(DE/2)^2CF=05再问:格式不对哟,改对了就采纳分就是你的再答:∵∠C