如图,△ABD,△ACE,△BCF是分别以
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:12:41
在△ABD和△ACE中,AB=AC∠A=∠AAD=AE∴△ABD≌△ACE(SAS)
∵∠1=∠2.∴∠DAB=∠1+∠BAE=∠2+∠BAE=∠EAC又∵AB=AC,AD=AE由边角边定律,所以△ABD≌△ACE.
证明:∵∠A=∠A,AB=AC,∠B=∠C,∴△ABD≌△ACE(ASA).
∠CDB=∠A+∠ABD=37+28=65(三角形外角等于不相邻两内角之和)∵△ABD≌△ACE∴∠AEC=∠ADB=180-∠CDB=180-65=115
在ΔABD,ΔACD中∠A=∠A∠B=∠CAD=AE所以ΔABD≌ΔACD所以BD=CE
证明:∠BAD=∠EAC=60°,则:∠BAE=∠DAC(等式的性质);又AB=AD,AE=AC.故⊿BAE≌⊿DAC(SAS),得:∠ADC=∠ABE.
这题有什么难得,因为△ABD、△ACE都是等边三角形所以AD=AB,AE=AC,∠DAB=60度,∠EAC=60度,所以∠DAB+∠BAC=∠EAC+∠BAC即∠DAE=∠BAE在△DAC和△BAE中
证明:(1)∵△ABD、△ACE都是等边三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=60°,∴180°-∠CAE=180°-∠BAD,即∠BAE=∠DAC,在△ABE和△ADC中,∵AB=A
因为,△ABD≌△ACE,所以,∠AEC=180°-28°-37°=117°因为,AB=AC所以,∠CDB=360°-117°乘2=117°主要是题目不明确,没有图,所以只能这样解答.
因为ab=ac,角bad=角caead=ae所以他俩全等
∵∠1=∠2∴∠CAE=∠BAD∵AB=AC,AD=AE∴△ABD≌△ACE
已知:①AB=AC②AD=AE③∠1=∠2结论:④BD=CE理由:∵AB=ACAD=AE∠1=∠2又∵∠CAD=∠DAC∴∠1+∠CAD=∠2+∠DAC∠BAD=∠CAE∴△ABD≌△AEC(SAS)
证明:∵ABAD=BCDE=ACAE,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,∵ABAD=ACAE,∴△ABD∽△ACE.
证明:∵AB比AD等于BC比DE等于AC比AE∴△ABC∽△ADE∴∠BAC=∠DAE∴∠BAC-∠DAB=∠DAE-∠DAB∴∠BAD=∠CAE∵AB/AC=AD/AE∴△ABD∽△ACE
∵等边△ABD△ACE△BFC∴AB=DB=ABCB=CF=BFAC=CE=AE∠ABD=∠CBF=∠EAC=60°∴∠ABD-∠CBD=∠CBF-∠CBD即∠ABC=∠DBF在△ABC和△DBF中A
(1)∵△ABD≌△ACE,∴AD=AE,AB=AC,∠ABD=∠ACE∴AD-AC=AE-AB,180°-∠ABD=180°-∠ACE即CD=BE,∠DCO=∠EBO(2)∠ABD=180°-∠A-
因为AB=AC,AD=AE,角A为公共角,所以△ABD≌△ACE(SAS)
取AB中点为P,AC中点为Q,连接PD,PM,MQ,EQPD,EQ分别是RT△ABD和RT△ACE,斜边上中线所以,PD=1/2AB,EQ=1/2AC因PD=PB,EQ=CQ∠PDB=∠PBD,∠QC
如果不给图,我考虑到了两种情况.(1)AD和AC在一条直线上,AE和AB在一条直线上,直接用SAS就可证明.(2)否则,三角形全等无法证出.