如图,○O是△ABC的内切圆,切点分别为DEFP是弧EF上的一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:55:43
如图:将O点与ABC三点连接.得OAB、OBC、OCA三个三角形.以三边为底边,高均为圆的半径1.三角形ABC的面积:S=BC*1/2+CA*1/2+AB*1/2=(BC+CA+AB)*1/2=18*
∵点O是△ABC的内切圆的圆心,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB),=12(180°-∠A),=55°,∴∠BOC=180°-(∠0BC
内切圆圆心是三角形各角平分线的焦点∠A=50°,∠B+∠C=130°1/2(∠B+∠C)=65°所以,∠BOC=115°
∵∠BAC=80°,∴∠ABC+∠ACB=180°-80°=100°,∵点O是△ABC的内切圆的圆心,∴BO,CO分别为∠ABC,∠BCA的角平分线,∴∠OBC+∠OCB=50°,∴∠BOC=130°
证明:连结OB,OC,因为∠ADE=∠AED,所以∠ADE=(180°-∠A)/2=90°-∠A/2,所以∠BDO=180°-∠ADE=90°+∠A/2,所以∠DBO+∠DOB=90°-∠A/2,因为
连接od,oe,角DOE+角DBE=180度,则角B=50度平面四边形内角和为360度,而D、E为切点,所以OD垂直于AB,OE垂直于BC.明白了吗?
D=4设半径BE=BF=X(4+X)平方+(6+X)平方=10平方一个解是22X=2*2=4
利用面积法连接OE,OF,OD过A作AH⊥BC于H解∵AB=AC∴H是BC中点(三线合一)∴HC=3∵AC=5∴AH=4∴△ABC面积=1/2*4*6=12∵圆O是△ABC内切圆∴OE⊥AC,OF⊥A
连接DO,FO,在四边形ADEF中,因为AB,AC是⊙O的切线,D,F是切点,所以∠ADO=∠AFO=90°,所以∠A+∠DOF=180°,∠DOF=180°-∠A,所以∠DEC=90°-∠A/2..
显然圆的半径=1/tan30=根号3于是面积为3π再问:说仔细点再答:⊙﹏⊙b汗开始比错了是π/3角BAC=60度因为等边三角形角EAB=30度且DE垂直AD(DE为内切圆半径)D为AB中点所以在直角
O是内切圆的圆心,也就是角平分线的交点所以∠BOC=90°+1/2∠A∵∠BOC=130°∴∠A=80°
三角形内切圆半径公式r=2S△/(AB+BC+AC)求得BC=5S△=AC·AB=12×5/2=30r=2故S阴=S△-πr²=30-12.56=17.44
角形ABC是等腰三角形,底边上的高h=√100-36=8三角形ABC的面积为48设三角形的内切圆的半径为x那么内切圆圆心到三角形ABC三边的距离都是x于是,1/2AB*x+1/2AC*x+1/2BC*
∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-50°)=65°,∴∠BOC=180°-65°=115°.
证明:设△ABC的内切圆O切BC于点D,过点D作⊙O直径DE,连接AE,并延长交BC于点F,则BF=CD,令⊙O分别切AB、AC于点M、N,过点E作GH∥BC,分别交AB、AC于点G、H,则GH切⊙O
等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=
如图,D是斜边AB上的切点,连接OE和OF,不难证明OECF是正方形,依题意有AF=AD=4;BE=BD=6;CE=CF=r,据勾股定理得(4+r)²+(6+r)²=(4+6)
∵∠EDF=50°∴∠EOF=100°(同弧所对圆心角是圆周角2倍)∵○O是△ABC的内切圆∴∠AEO=∠AFO=90°∴∠A=360°-90°-90°-100°=80°(四边形内角和是360°)
设BC切⊙O于点D,连接OC、OD;∵CA、CB都与⊙O相切,∴∠OCD=∠OCA=30°;Rt△OCD中,CD=12BC=1,∠OCD=30°;∴OD=CD•tan30°=33;∴S⊙O=π(OD)