如图,○o是三角形abc的外接圆,○o的半径为3,∠a=45度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:58:02
证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上
S△AOB=S△BOC=S△AOC,理由如下:分别延长AO、BO、CO,交BC、AC、AB于D、E、F,∵O是△ABC的重心,∴AD、BE、CF是△ABC的中线,∴S△ABD=S△ABE=1/2S△A
证:∵BD⊥ACCE⊥AB∴∠ADB=∠AEC=90°∵∠BAD=∠CAE∴△ACE∽△ABD∵AD:AB=AE:AC∵∠BAE=∠DAE∴△ADE∽△ABC
(1)∵AB=AC,∴∠ABC=∠ACB又∠ABC+∠ECB+∠BCE=180°,∠ACB+∠DBC+∠BDC=180°同时∠ECB=∠BDC=90°,所以∠BCE=∠DBC所以三角形BOC是等腰三角
画了图,但是上传不上.你看着图,因为AD平分角BAC,又是外接圆,所以∠BAD和∠BCH所对的是同一段弧.所以有∠BAD=∠CAD=∠BCH所以易证△AHC∽△CHD,所以CH²=DH×AH
外心即三角形各边垂直平分线的交点设od垂直bc于d所以cd=1/2bc=12厘米od、oc和cd根据勾股定理od²+cd²=oc²oc²=6²+12&
S△ABC=6×8×1/2=24因为O是三角形角平分线的交点所以OD=OE=OF(用角平分线上的点到交的两边距离相等得出,此结论无需写证明过程,可直接用)设OD为x则S△ABC=(AB×OF×1/2)
证明:(1)在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合-).连接OA
过点O作OG垂点O是三角形ABC三条角
不一定全等.只有一边相等和边的对角相等.不满足全等条件.随便举个反例就行了
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π
连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2
过B作BM⊥AC可得AM=3BM=3√3在△BCM中用勾股定理BC=2√13内切圆圆I的半径为r1/2r(AB+BC+AC)=1/2×8×3√3r=(7√3-√39)/3外接圆圆O的半径过O点作AB,
三角形外接圆圆心是三边的垂直平分线交点,所以作其任意两边垂直平分线,这两条垂直平分线交点O,再以点O为圆心,OA为半径作圆,即可得到外接圆.第二问直接用正弦定理即可求解,这应该是初三的题目,我就用初三
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
∵BD=AB/2,AB=2OB,∴BD=OB,∵AB是直径,∴〈ACB=90°,(半圆上圆周角是直角)∵〈A=30°,∴〈ABC=60°,∵OB=OC=R,∴△OBC是正△,∴BC=OB=OC,∴BC
根据重心性质,∵AO=2OD,∴S△ABO=2S△BDO=2,(高相同),∵BD=CD,∴S△BDO=S△ODC=1,同理,S△AOC=2S△ODC=2,∴S△ABC=1+1+2+2=6.
证明:∵等边△ABC,等边△DCE∴AC=BC,DC=EC,∠BAC=∠ABC=∠ACB=∠DCE=60∵∠ACE=∠DCE+∠ACD,∠BCD=∠ACB+∠ACD∴∠ACE=∠BCD∴△ACE≌△B
先随便画个图.易知,点P为角A.B.C,三角的角平分线的交点.且角A为圆周角,角BOC为圆心角.设角A为X,角BOC为2X.连接PB,PC所以:角B+角C=180-角A角PBC+角PCB=90-角A/