如图,○O是非直径的弦,ef经过点a,∠CAE=∠B,求证EF是○O的切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:02:38
已知:△ABC内接于圆O,过点A作直线EF.若直线AB是非直径的弦,∠CAE=∠B,求证:EF是圆O的切线.

连结AO并延长交⊙O于点D,连结CD∵∠ACD=90°∴∠D+∠CAD=90°∵∠EAC=∠ABC=∠D∴∠EAC+∠CAD=90°∵点A在⊙O上∴EF与⊙O切于点A

如图,AB是圆O的直径,AD是弦,E 是圆O外一点,EF垂直AB于F,交AD于点C,且CE=ED,求证:DE是圆O的切线

证明:连接OD∵OD=OA∴∠ODA=∠A∵EC=ED∴∠EDC=∠ECD=∠ACF∵EF⊥AB∴∠A+∠ACF=90°∴∠ADO+∠CDE=90°即OD⊥DE∴DE是圆O的切线

如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.

连BC和OC,∵△ABC和△ACD相似,∴AB比AC=CA比AD,∵AB=4,AD=1,∴AC²=4,∴AC=2∵∠DAC=∠BAC,∠BAC=∠OCA,∴∠OCD=90,四边形OCFA为直

如图,AB是⊙O的直径,EF是弦,CE⊥EF交AB于C,DF⊥EF交AB于D求证:AC=BD

过O作OG⊥EF交EF于G.∵EF是⊙O的弦,又OG⊥EF, ∴EG=FG.∵CE⊥EF、DF⊥EF、OG⊥EF, ∴OG∥CE∥DF, ∴CDFE是梯形,结合证得的EG=FG,得:OG是梯形CDFE

已知:如图,⊙O的直径EF分别交弦AB,CD于点G,H,且AG=BG,CH=DH,求证:AB//CD

连接OAOB所以三角形OAB为等腰三角形又AG=BG所以AB垂直EF,同理CD垂直EF,所以AB//CD

如图,AB是圆O的直径,点P在AB的延长线上,∠APC=∠APE.求证:弦CD=EF

过点O分别作PC、PE的垂线,垂足为M、N.因为∠APC=∠APE,OM⊥PC,ON⊥PE,所以OM=ON(角平分线的性质).所以,CD=EF(垂径定理的推论).

已知:如图,AD是圆O直径,EF是弦,AB⊥EF,DC⊥EF,垂足分别是B、C.求证:BE=FC

你可以过O作EF的垂线,垂足为H.则可知道H是EF的中点.然后可以得到AB//OH//CD.O为AD的中点,则H为BC的中点.由BH=CH,EH=FH得,BE=FC有个定理,叫做圆中弦还是什么来着,就

如图,AB是圆O的直径,EF是弦,CE⊥EF,DF⊥EF,E、F为垂足.求证:AC=BD

已知如图AB是圆O的直径,点P为BA延长线上一点,PC为圆O的切线,C为切点,(8)求证BC^8=BD*BA(8)若AC=8DE=8求PC的长第一问:8)

如图,AB是圆O的直径,EF是弦,CE垂直EF,DF垂直EF,E,F为垂足.求证AC=BD

过O点作OM⊥EF,垂足为M.则有ME=MF即点M是EF的中点.∵CE⊥EFDF⊥EFOM⊥EF∴DF‖OM‖CE又点M是EF的中点∴OM是梯形CDEF的中位线则OC=OD∵AB是⊙O的直径∴OA=O

如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.求证:EF是⊙O的切线.

证明:连接OC,如图,∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠BAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥EF,∴OC⊥CF,∴EF是⊙O的切线.

如图,⊙O的直径AB与弦EF相交于点P,交角为45°,若PE2+PF2=8,则AB等于______.

作OG⊥EF于G,连接OE,根据垂径定理,可设EG=FG=x,则PE=x+PG,PF=x-PG,又∵PE2+PF2=8,∴(x+PG)2+(x-PG)2=8,整理得2x2+2PG2=8,x2+PG2=

如图(a),AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.

证明:(1)连OC,则OC=OA,∴∠BAC=∠OCA           (1分)∵EF

已知:如图,AB、CD为圆O的直径,弦CE平行AB .DE交AB于F,求证,EF=DF

证明:∵CD是⊙O的直径∴∠CED=90°(直径所对的圆周角是直角)∵CE//AB∴∠AFD=∠CED=90°∵AB是⊙O的直径∴EF=DF(垂径定理:垂直于弦的直径平分弦及弦所对的两条弧)

如图,AB是圆o的弦,CD是圆o的直径,CD⊥AD,垂直点为点M,EF是圆o的切线,切点为E,切交

题目CD⊥AD好像有文字错误,应该是CD⊥AB,请核实(1)连接OE,则OE⊥EF,

已知三角形abc内接于圆o,过点a做直线ef.如图二,ab是非直径的弦,角cae等于角b.求证ef是圆o的切线

再问:十分感谢!再答:都明白了吗,有不懂的地方,我再给你解释再问:都明白了!将军真乃神人也!再答:好的,谢谢好评了

如图,ab是圆o的直径,cd是非直径的任意一条弧,求证:cd

解题思路:过B作弦BE,使BE=CD,连接AE,说明△AEB是直角三角形,由斜边大于直角边得出结论解题过程:证明:过B作弦BE,使BE=CD,连接AE∵AB是⊙O直径∴∠AEB=90°∵Rt△AEB中

如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证.

证明:(Ⅰ)连结AD,∵AB为圆的直径,∴∠ADB=90°,又∵EF⊥AB,∴∠EFA=90°,∴A、D、E、F四点共圆,∴∠DEA=∠DFA.(Ⅱ)∵A、D、E、F四点共圆,∴由切割线定理知BD•B