如图,一铁块放在一水平固定的一较长条形磁铁一端

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/01 09:15:50
质量M=3kg的木板静止在光滑水平面上,木板的左端放一质量m=1kg的铁块,现给铁块一水平向右,大为V2=4m/s的初速

          分析:(你题目中的弹簧应该是与右端固定的吧!)   

如图,质量为M的平板车静止在光滑的水平地面上,小车的左端放一质量为m的木块,车的右端固定一个轻质弹簧

这个题目有个隐含条件没有给,其实不给也可以根据已知条件推导出来,木块与小车表面肯定存在摩擦力,只有存在摩擦力,木块和小车才能达到二次共速.下面分别来解释下你的疑问.分析一下弹簧被压缩到最短时刻后的运动

一物体放在水平桌面上,在与水平方向成θ角斜向上的拉力F作用下做匀速直线运动,如图,则(  )

A、物体做匀速直线运动,则水平方向应该有:Fcosθ=f即物体一定受摩擦力作用,有摩擦力一定有弹力,即地面对物体的支持力不可能为零,A错误;B、物体受重力、支持力、拉力和摩擦力处于平衡,则拉力和摩擦力

(2013•嘉定区三模)如图,物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M

楔形物体释放前,小球受到重力和支持力,两力平衡;楔形物体释放后,由于小球是光滑的,则小球水平方向不受力,根据牛顿第一定律知道,小球在水平方向的状态不改变,即仍保持静止状态,水平方向不发生位移.而竖直方

如图,用水平力F把一铁块紧压在墙上不动,当F的大小变化时,铁块对墙的压力N、铁块所受摩擦力f大小的变化情况是(  )

对物体进行受力分析:重力G、墙的支持力N′和摩擦力f、压力F,作出力图,如图所示,由于铁块压在竖直墙上不动,则根据平衡条件得:N′=F,f=G则知,当F逐渐增大时,N′增大,而f不变,由于铁块对墙的压

原长为l劲度系数为k的轻弹簧一端固定一小铁块,另一端连接在竖直轴oo'上,小铁块放

设弹簧的“劲度系数”为K静止时,最大静摩擦力方向,与弹簧的拉力方向相反Fmax=K*(5L/4-L)-----(1)做圆周运动时,角速度ω最大时,最大静摩擦力方向,与弹簧的拉力方向相同Fmax+K*(

体积为100厘米3的木块A漂浮在水面上,有1/4露出水面(如图),现在木块上面放一铁块B,刚好

把铁块放到木块上时,木块正好全部浸没,说明铁块受到的浮力就是这部分木块排开的水的重力你前面做的不对1、木块受到的浮力等于它排开水的重力,排开水的部分是3/4,而不是1/4,所以F浮=pgV排=1000

如图,用细线悬挂一小铁块,将小铁块拉直到如图所示的水平位置,然后放手使小块从静止开始向下摆动,在小铁块摆向最低点的过程中

开始时,球的速度为零,重力的功率为零,而当球到达最低点时,速度虽然最大,但方向沿水平方向,故此时重力的功率也为零,而在运动中重力与速度有一定夹角,故功率不为零,因此可知重力的功率一定是先增大,后减小的

如图,一长为L的轻杆一端固定在光滑铰链上,另一端固定一质量为m的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速

先求拉力F的大小.根据力矩平衡,F•L2•sin60•=mgLcos60°,得F=23mg3;再求速度v=ω•L2;再求力与速度的夹角θ=30°,所以功率P=Fvcosθ=12mgLω.故选:C.

如图,一根轻弹簧竖直放在水平桌面上,下端固定,上端放一重物,稳定后弹簧长度为L,现将该轻弹簧截成等长的两段,将该重物分为

设弹簧原长为L0,劲度系数为k;重物的质量为m.根据你的描述可知:L=L0-mg/k.将弹簧截成等长的两段后,每段的原长变成L0/2,劲度系数变成2k,放上半个重物后,长度为:L1=L0/2-mg/4

如图所示,一木板B放在水平地面上,木块A放在B的上面,A的右端通过轻质弹簧秤固定在直立的墙壁上.

弹簧秤的示数恒为F0=8N,则弹簧没有伸长,木块A静止不动,并且AB之间的动摩擦力fAB=8NfAB=μ1mAgA,B间的摩擦系数μ1=fAB/(mAg)=8/(4*10)=0.2F-fB-fAB=m

高一物理题 如图11所示,倾角为α的等腰三角形斜面固定在水平面上

既然M>m,则μMgcosα>μmgcosα,这话不对.滑动摩擦力才能用μN来计算,而M与丝绸之间发生的是静摩擦力.再问:对不起打错了其实我的意思是为什么M的下滑分力不能大于最大静摩擦力?再答:这个题

如图11所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩

由于绸带和斜面之间没有摩擦,所以当两个物块所受的摩擦力等于重力沿斜面方向向下的分力时,两个物块就不会相对绸带滑动,但是此时绸带受到M的摩擦力f1=Mgcosαμ大于收到m的摩擦力f2=mgcosαμ,

如图,一个楔形物体M放在固定的粗糙斜面上,上表面水平,在其上表面上放一光滑小球m,楔形物体从静止开始释放,则小球在碰到斜

楔形物体释放前,小球受到重力和支持力,两力平衡;楔形物体释放后,由于小球是光滑的,则小球水平方向不受力,根据牛顿第一定律知道,小球在水平方向的状态不改变,即仍保持静止状态,水平方向不发生位移.而竖直方

用一台非铁磁性物质制成的天平(包括天平盘),可以认为他不受磁力影响.左盘中央放一铁块A,其上方不远处有一固定在支架上的电

这个如果排除磁铁对天平的铁质部分的吸引力,当磁铁未通电时.天平两端处于平衡状态,A所受到两个力,分别向上的托盘对A的支持力,还有本身向下的重力;两个力等大反向.当磁铁通电后,它对铁块A有一个向上的拉力

高一物理 如图所示,一个劈形物ABC各面光滑,放在固定的斜面上,AB面水平并放上一个光滑小球,把劈

楔形物体释放前,小球受到重力和支持力,两力平衡;楔形物体释放后,由于小球是光滑的,则小球水平方向不受力,根据牛顿第一定律知道,小球在水平方向的状态不改变,即仍保持静止状态,水平方向不发生位移.而竖直方

(2006•淮安一模)如图,在光滑的倾角为θ的固定斜面上放一个劈形的物体A,质量为M,其上表面水平且粗糙.质量为m的物体

(1)对整体分析,在垂直斜面方向上有:N=(m+M)gcosθ则A对斜面的压力为:F=N=(m+M)gcosθ.在斜面方向上有:(M+m)gsinθ=(M+m)a解得:a=gsinθ.(2)将加速度a

一有固定斜面的有一固定斜面的小车在水平面上作直线运动,小球通过细绳与车顶相连,小球某时刻正处于如图所

选AB.这道题的N和T是否可以为0跟运动方向无关,只跟加速度有关,向左加速就等于向右减速.所以不用看向哪里运动.首先看N:如果N为0,那么小球只受拉力和重力,此时可以令拉力的水平分力提供向右的加速度,

如图,一个倾角为θ的斜面放在水平面上,斜面上固定一挡板,把一个重力为G的小球放在斜面上被挡板卡住处

求小球对斜面的压力的大小由卡住小球处挡板的高度决定.如果挡板的高度可视为零,则小球对斜面的压力为零.