如图,三角形ABCD在平面a外,AB属于a=P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:35:58
如图,在正方体ABCD-A`B`C`D`中,求证平面ACC`A`垂直平面A`BD.

证明:∵ABCD-A`B`C`D`为正方体∴平面ACC`A`⊥底面ABCD于AC又BD⊥AC且BD⊂底面ABCD∴以BD⊥平面ACC`A`又BD⊂平面A`BD∴平面ACC`A`

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0

(1)∵菱形ABCD,A(0,3),B(-4,0)∴C(-4,-5)∴经过点C的反比例函数的解析式为y=20/x(2)∵菱形ABCD,A(0,3),B(-4,0)∴D(0,-2)∴S△cod=1/2×

如图,在四棱锥P-ABCD中,四边形ABCD为矩形,三角形PAD为等腰直角三角形,角APD=90°,平面PAD垂直平面A

1证明:平面PAB垂直平面ABCD,且交于直线AD,四边形ABCD为矩形,则CD垂直AD,则直线CD垂直于平面PAD,CD属于平面PDC,所以平面PDC垂直平面PAD.2过P做PE垂直AD于E,因平面

如图,平行四边形ABCD的四个顶点ABCD均在平行四边形A1B1C1D1所确定的一个平面a外

不要,因为A1B1C1D1已经是平行四边形了有图吗?因为AA1,BB1互为平行,所以AB平行A1B1CC1,DD1互为平行,所以CD平行C1D1所以ABCDA1B1C1D1互为平行,所以ABCD为平行

正方形abcd在平面直角坐标系中得位置如图,在平面内找p

正方形ABCD在平面直角坐标系中的位置如图,在正方形内部找点P,使△PAB,△五个.(0,0),(t-1,0),(1-t,0)(0,1-t),(0,t-1再问:答案是9

如图,在四边形ABCD中,已知AB=AD,三角形BAD=三角形BCD=90度,AH垂直BC,且AH=a.求四边形ABCD

做出来啦!过点A作BC的平行线AM交CD的延长线于M∵AB=AD∵∠BAH=∠DAM∵∠AHB=∠AMD=90度∴⊿ABH≌⊿ADM∴AH=AM=aS四边形ABCD=S矩形AHCM=AH*AM=a*a

如图,平行四边形ABCD放置在平面直角坐标系中,已知点A(-2,0)

⑴∵ABCD是平行四边形,且AB=6,∴DC=6,又从D(0,3),CD∥AB得,C(6,3),双曲线Y=K/X(K≠0)过C(6,3),∴3=K/6,∴K=18,双曲线解析式为Y=18/X.⑵∵B、

如图在四棱锥S——ABCD中,底面四边形ABCD是平行四边形,SC⊥平面ABCD,E为SA的中点,求证平面EBD⊥平面A

超级简单好不好?取AC与BD的交点O,连接OE∵四边形ABCD是平行四边形,∴O是AC中点∵E是AS中点,∴OE∥CS∵CS⊥面ABCD,∴OE⊥面ABCD∵O∈BD,∴面BDE⊥面ABCD

如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为(  )

如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系,∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1∴A(1,0,0),P(

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA垂直平面ABCD.(1)指出图中有哪些三角形是直角三角形,并说明理

好吧,应该是.连接AD,因为,PA垂直平面ABCD,AD属于平面ABCD,所以BD垂直于PA;因为ABCD为矩形,BD垂直于AC,AC属于平面PAC,所以BD垂直于AC所以BD垂直于平面PAC(2)因

如图在平面直角坐标系中Rt三角形OAB

oA:y=4/3x反比例函数表达式:y=12/xC:(4,3)M的坐标为(1.5,2)连接MC与AB的交点就是点P的坐标MC的表达式要求出来

如图,在平面内,p为平行四边形外一点,已知三角形PCD的面积分别为7平方厘米和3平方厘米,平行四边形ABCD的面积是多少

已知三角形PCD的面积分别为7平方厘米和3平方厘米?到底谁7谁3麻烦说清楚如果是pcd=3pab=7则abcd面积为8

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)B(-4,0)

C点坐标为:(-4,-5)设经过X点的反比例函数解析式为y=k/x则:-5=-k/4求得k=5/4所以:经过点C的反比例函数的解析式为y=5/(4x)(2)设P点的横坐标为m,则P点到AO的距离为|m

如图,在平面直角坐标系中,已知A(-1,0),B(3,0)S四边形ABCD=8

第一个是正确的.利用三角形内角之和和同旁内角互补定理可以证明出∠CDP+∠BOP=∠OPD,如果BC是射线那当P点过C点则为②(∠CDP+∠OPD)/∠BOP再问:лл����ô��һ�ʵġ�����

如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3),B(-4,0)

只能用用高中方法OB=4,OA=3∴AB=5sin∠ABO=3/5cos∠ABO=4/5sin∠ABC=sin(∠ABO+90°)=cos∠ABO=4/5cos∠ABC=-3/5tan∠ABC=-4/

如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P点在平面ABCD内的射影为A,则二面角

∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角

如图,在平面直角坐标系中有一个矩形ABCD,其中A(0,0),B(8,0),D(0,4),若将三角形ABC沿A所直线翻

C(8,4),AC斜率=4/8=0.5,BE斜率=-1/0.5=-2BE:Y=16-2X,AE=AB=8E在圆上::X^2+Y^2=64,求交点:5X^2-64X+192=0X1=8(B),X2=4.