如图,以rt△abc的ac边为直径作圆o交斜边AB于点E,连接eo

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:55:47
如图,以Rt三角形ABC的顶点A为直角顶点,AB.AC为直角边,以三角形ABC分别作等腰Rt三角形ABD,

显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.

如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,

设三边分别为7a,24a,25a,则:12(24a+24)+12(7a+7)+12(25a+25)+12×7a×24a=12×24×7,解得:a=23,故构成的三角形的三边分别是143,16,503,

如图,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△

EP=FQ,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG,在△EAP与△ABG中,∠EPA=∠AGB=90°∠PE

如图:在Rt△ABC中,∠ACB=90°,∠BAC=30°分别以AB,AC为边在△ABC的外侧作正△ABE和正△ACD,

1,因为∠BAC=30°∠ACB=90°所以BC等于AB的一半因为正△ABE,EG⊥AB,所以三线合一BG等于AB的一半.因为∠CBA=∠EBA=60°所以△ABC全等于△BEG所以EG=AC2,过D

如图,分别以△ABC的AB,AC边为斜边向外作Rt△ABD和Rt△ACE,且使∠ABD =∠ACE,M是BC的中点.试猜

如图所示,M,F,G分别为BC,AC,AB中点,(辅助线)∵△AEC和△ADB是直角三角形,且F,G分别是他们斜边中点,∠ABD =∠ACE∴图中 标1的角相等.且EF=MG=0.

如图,在RT△ABC中,∠ABC=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周所得图形的表面积

题目与图不符;1、以题目为主计算结果是:(√7)^2*3.14=21.982、以图为主计算结果是:5^2*3.14=78.5

已知:如图,分别以Rt△ABC的直角边AC.BC为边,在Rt△ABC外作两个等边三角形(省略).

∵△FBC与△ECA为等边三角形∴∠FCB=∠ECA=60°,FC=BC,CE=CA∴∠FCB+∠BCA=∠ACE+∠BCA即∠FCA=∠BCE∴△FCA≌△BCE(SAS)∴FA=BE

如图,已知ΔABC是边长为1的等腰直角三角形,以RtΔABC的斜边AC为直角边,画第二个等腰RtΔACD,再以RtΔAC

(1)已知ΔABC是直角边长为1的等腰直角三角形,由勾股定理可知它的斜边AC=√2同理:再以RtΔABC的斜边AC为直角边,画第二个等腰RtΔACD,    &

如图所示,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰RtΔACD,再以RtΔAC

每个新等腰直角三角形,斜边为直角边的根号2倍,第5个为,根号2的5次方,所以答案为:4倍根号2.

如图,在Rt三角形abc中,角b=90°,ac=16,bc=12,求以ab为边的正方形abed的面积

正方形的面积=AB^2=AC^2-BC^2=16*16-12*12=112式中的(AB^2=AC^2-BC^2)就是勾股定理

例3.在Rt△ABC中,∠ABC=90°,点O是BC边的中点,以O为圆心,OB为半径作⊙O.(1)如图1,⊙O与AC相交

解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠

如图,分别以△ABC的AB,AC边为斜边向外作Rt△ABD和Rt△ACE,且使∠ABD=∠ACE,M是BC的中点,试猜想

MD=ME分别取AB,AC的中点F,G.分三种情况讨论.当MD,不过F,ME不过G时,连接D,F;连接E,G,连接F,M;连接G,M.因为△ABD与△ACE是直角三角形,所以D,E分别在以AB为直径的

如图,以△ABC的边AB、AC为斜边在△ABC外作Rt△ABD和Rt△ACE,且∠ABD=∠ACE,M是BC的中点,求证

取AB中点为P,AC中点为Q,连接PD,PM,MQ,EQPD,EQ分别是RT△ABD和RT△ACE,斜边上中线所以,PD=1/2AB,EQ=1/2AC因PD=PB,EQ=CQ∠PDB=∠PBD,∠QC

如图,以△ABC的边AB和AC为腰,分别向△ABC外作等腰Rt△ABD和等腰Rt△ACE,其中∠DAB=∠EAC=90°

证明:∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即:∠DAC=∠BAE,在△ABE和△ADC中,AB=

已知:如图,在Rt△ABC中,∠C=90°,∠A=30°,分别以AB、AC为边在△ABC的外侧作等边△ABE和等边△AC

证明:过E作EG丄AB于G,如图,∵△ABE为等边三角形,∴BG=12AB,∠ABE=∠BEA=∠EAB=60°,AE=AB,∵Rt△ABC中,∠C=90°,∠A=30°,∴BC=12AB,∴AG=B

如图,以Rt△ABC的一直角边AB为直径作圆,交斜边BC于P点,Q为AC的中点.

(1)连接OP,AP.∵AB是⊙O的直径,∴∠APB=90°.∴∠APC=90°.∵Q为AC的中点∴PQ=AQ=QC.(1分)∴∠PAQ=∠APQ∵OA=OP,∴∠OAP=∠OPA∴∠PAQ+∠OAP

如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的

∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×