如图,以rt△abc的ac边为直径作圆o交斜边AB于点E,连接eo
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:55:47
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
设三边分别为7a,24a,25a,则:12(24a+24)+12(7a+7)+12(25a+25)+12×7a×24a=12×24×7,解得:a=23,故构成的三角形的三边分别是143,16,503,
EP=FQ,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG,在△EAP与△ABG中,∠EPA=∠AGB=90°∠PE
1,因为∠BAC=30°∠ACB=90°所以BC等于AB的一半因为正△ABE,EG⊥AB,所以三线合一BG等于AB的一半.因为∠CBA=∠EBA=60°所以△ABC全等于△BEG所以EG=AC2,过D
如图所示,M,F,G分别为BC,AC,AB中点,(辅助线)∵△AEC和△ADB是直角三角形,且F,G分别是他们斜边中点,∠ABD =∠ACE∴图中 标1的角相等.且EF=MG=0.
题目与图不符;1、以题目为主计算结果是:(√7)^2*3.14=21.982、以图为主计算结果是:5^2*3.14=78.5
∵△FBC与△ECA为等边三角形∴∠FCB=∠ECA=60°,FC=BC,CE=CA∴∠FCB+∠BCA=∠ACE+∠BCA即∠FCA=∠BCE∴△FCA≌△BCE(SAS)∴FA=BE
(1)已知ΔABC是直角边长为1的等腰直角三角形,由勾股定理可知它的斜边AC=√2同理:再以RtΔABC的斜边AC为直角边,画第二个等腰RtΔACD, &
每个新等腰直角三角形,斜边为直角边的根号2倍,第5个为,根号2的5次方,所以答案为:4倍根号2.
2的(n+1)次方的算术平方根.(根号打不出来)
正方形的面积=AB^2=AC^2-BC^2=16*16-12*12=112式中的(AB^2=AC^2-BC^2)就是勾股定理
解题思路:(1)连接OD、BD,根据圆周角定理得到∠BDC=90°,则E为Rt△ABD的斜边AB的中点,根据直角三角形斜边上的中线性质得到DE=BE=1/2AB,则∠EBD=∠EDB,由于∠EBD+∠
MD=ME分别取AB,AC的中点F,G.分三种情况讨论.当MD,不过F,ME不过G时,连接D,F;连接E,G,连接F,M;连接G,M.因为△ABD与△ACE是直角三角形,所以D,E分别在以AB为直径的
取AB中点为P,AC中点为Q,连接PD,PM,MQ,EQPD,EQ分别是RT△ABD和RT△ACE,斜边上中线所以,PD=1/2AB,EQ=1/2AC因PD=PB,EQ=CQ∠PDB=∠PBD,∠QC
证明:∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即:∠DAC=∠BAE,在△ABE和△ADC中,AB=
证明:过E作EG丄AB于G,如图,∵△ABE为等边三角形,∴BG=12AB,∠ABE=∠BEA=∠EAB=60°,AE=AB,∵Rt△ABC中,∠C=90°,∠A=30°,∴BC=12AB,∴AG=B
(1)连接OP,AP.∵AB是⊙O的直径,∴∠APB=90°.∴∠APC=90°.∵Q为AC的中点∴PQ=AQ=QC.(1分)∴∠PAQ=∠APQ∵OA=OP,∴∠OAP=∠OPA∴∠PAQ+∠OAP
∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×