如图,以三角形abc中的ab,ac为边分别向外作

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:35:58
如图,以Rt三角形ABC的顶点A为直角顶点,AB.AC为直角边,以三角形ABC分别作等腰Rt三角形ABD,

显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.

已知:如图,在三角形ABC中,AB=AC,以BC为直径的半圆……

连接OD,得OD⊥DE,得OD‖ACOD=OB(半径相等),得∠DBO=∠BDO由于OD‖AC,得∠ACB=∠DOB=∠OBD得三角形DBO三内角相等,为等边三角形∠BDO=∠BAC因此,三角形ABC

如图,三角形ABD、三角形ACE、三角形BCE是分别以三角形ABC的边AB、AC、BC为一边的等边三角形.求证四边形AD

按图形,ΔACE是等边三角形.证明:∵ΔACE、ΔBCF为等边三角形,∴CB=CF,CA=CE,∠BCF=∠ACE=60°,∴∠BCF+∠ACF=∠ACE+∠ACF,即∠BCA=∠FCE,∴ΔBCA≌

已知,如图,三角形ABC中,AB=17 BC=21求三角形ABC面积

84    过点A做AD垂直于BC,设BD为X那么,AB2-X2=AC2-(21-X)2(2为平方),求得X为15,那么高AD=8,三角形ABC的面积为21*8

如图,分别以三角形ABD的两边AB、AD为直角边向两侧做两个等腰直角三角形,:三角形ABC和三角形ADE,连接CD、BE

由题意可得AC=ABAE=AD∠ABC=∠DAE(直角三角形的两个直角)所以∠ABC+∠DAB=∠DAE+∠DAB因为AC=AB∠DAC=∠EABAE=AD(三角形全等SAS)所以可得△DAC≌△EA

如图任意三角形ABC分别以AB,AC为腰,以A为顶角的顶点向三角形ABC的两侧作等腰三角形ABM,等腰三角形ACN,且

AB=AM,AN=AC,∵∠ANC=∠ABM,∴∠NAC=∠BAM,【三角形内角和180°】∴∠NAB=∠CAM【两边同减∠BAC】可得△NAB=△CAM(SAS)∴∠NBA=∠CMA若∠ANC=∠A

如图,三角形ABC中,AB=AC,

∵AB=AC∴△ABC为等腰三角形,故∠B=∠C=(180°-100°)/2=40°在直角△ADC中∠CAD=180°-90°-∠C=90°-40°=50度°

如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形

△BDC≌△AEC∵等边三角形ABC∴BC=AC∵∠BAC=∠DCE∴∠BCD=∠ACE∵等边三角形EDC∴DC=EC∵BC=ACBCD=∠ACEDC=EC∴△BDC≌△AEC(SAS)

如图三角形ABC中AB=AC是三角形ABC的角平分线

(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;

三角形 如图在三角形ABC中,以AB,AC边为边向外做等边三角形ABD和等

证明:连接CD,BE∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠BAD=∠CAE=60°∴∠DAC=∠BAE∴△ACD≌△ABE∴CD=BE∵P是BD中点,M是BC中点∴PM是△BC

如图,在三角形ABC中AB=AC

解1:因AB是员直径,所以角ADB=90,即AD垂直于BC.因AB=AC,且AD垂直BC,AO=DO,所以角CAD=角BAD=角ADO.因AC垂直EF,因此角CAD+角ADE=角AED=90又因CAD

如图在三角形abc中ab等于ac.

(1)原题应该是问ab平方-ap平方=pb*pb吧?证:abc是等腰三角形,p是bc中点,可知pb=pc,ap⊥bc又勾股定理ab^2-ap^2=pb^2=pb*pc,得证.(2)成立.过a做bc垂线

如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由

△BDC≌△AEC.理由如下:∵△ABC、△EDC均为等边三角形,∴BC=AC,DC=EC,∠BCA=∠ECD=60°.从而∠BCD=∠ACE.在△BDC和△AEC中,BC=AC∠BCD=∠ACEDC

如图,在三角形ABC中,AB=AC,

因为AB=AC,角A=36度所以角ABC=角ACB=72度因为CD平分角ACB所以角BCD=角DCA=36度因为角A=36度所以角BCD=角A因为角DBC=角ABC所以三角形CDB相似于三角形ABC所

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC