如图,以三角形ABC的边AB.AC.BC为一边,分别向三角形的外侧做正方形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:43:58
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
一、由已知可知:三角形ABD,三角形ACE为等腰直角三角形,则AB=AD,AE=AC.所以,BE=AE-AB=AC-AD=CD二、因为角BAC是直角,BE在直线AE上,所以BE垂直AC,因为CD在直线
连接OD,得OD⊥DE,得OD‖ACOD=OB(半径相等),得∠DBO=∠BDO由于OD‖AC,得∠ACB=∠DOB=∠OBD得三角形DBO三内角相等,为等边三角形∠BDO=∠BAC因此,三角形ABC
证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B
(1)∵∠EAB=∠GAC=90°所以∠EAC=∠BAG又∵AE=AB,AC=AG∴△BAG≡△EAC∵∠EAB=90°∴△BAG顺时针旋转90°就可以与△EAC重合(2)设AE与BG相交于点H,BG
过D作DH‖BC交AB于H,设BC=1,∴AB=2,AC=AD=√3,由∠BAC+∠BAE=90°,∴DH‖AE.(1)由DH⊥AC,∴BH=AH=1由AH=1,AD=√3,∠BAD=90°,∴DH=
∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R
按图形,ΔACE是等边三角形.证明:∵ΔACE、ΔBCF为等边三角形,∴CB=CF,CA=CE,∠BCF=∠ACE=60°,∴∠BCF+∠ACF=∠ACE+∠ACF,即∠BCA=∠FCE,∴ΔBCA≌
三角形BAE与DAC中,AB=AD,角BAE=DAC,AE=AC所以三角形BAE与DAC全等所以角AEB=ACO因为角CAE+AEB=COE+ACO所以角COE=CAE=60度所以tanCOE=tan
我怎么发现图好像花不出来呢?是空间立体几何还是平面几何?待我回家慢慢研究,证出来再告诉你
由题意可得AC=ABAE=AD∠ABC=∠DAE(直角三角形的两个直角)所以∠ABC+∠DAB=∠DAE+∠DAB因为AC=AB∠DAC=∠EABAE=AD(三角形全等SAS)所以可得△DAC≌△EA
AB=AM,AN=AC,∵∠ANC=∠ABM,∴∠NAC=∠BAM,【三角形内角和180°】∴∠NAB=∠CAM【两边同减∠BAC】可得△NAB=△CAM(SAS)∴∠NBA=∠CMA若∠ANC=∠A
1.CE=BD,△BAD≌△EAC,2.延长AM到P使MP=AM,连接CM(或BM),则三角形ACP≌△DAE,∴AP=DE,即2AM=DE.3.过D作AE的平行线交AN的延长线与Q,可得三角形ADP
证明:连接CD,BE∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠BAD=∠CAE=60°∴∠DAC=∠BAE∴△ACD≌△ABE∴CD=BE∵P是BD中点,M是BC中点∴PM是△BC
证明:(1)连接DE、DF依题意可知,CD、EF为圆O的直径.有:∠ECF=∠CFD=∠FDE=∠DEF=90°且有CD=EF所以四边形ECFD为矩形,有DF=EC∠DFB=∠ECF=90°有因为点D
以下都是向量:AM*EG=(AB+BM)*(AG-AE)=(AB+1/2BC)*(AG-AE)=(AB+1/2(AC-AB))*(AG-AE)=1/2(AB+AC)*(AG-AE)=1/2(AB*AG