如图,圆O为△的内切圆,∠50°,AO的延长线交BC于点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:44:51
如图,已知三角形的周长为18,内切圆o的半径为1,求△ABC的面积

如图:将O点与ABC三点连接.得OAB、OBC、OCA三个三角形.以三边为底边,高均为圆的半径1.三角形ABC的面积:S=BC*1/2+CA*1/2+AB*1/2=(BC+CA+AB)*1/2=18*

如图,圆o是如图Rt△的内切圆,∠ACB=90°,AC=12,AB=13,则途中的阴影部分面积为

三角形内切圆半径公式r=2S△/(AB+BC+AC)求得BC=5S△=AC·AB=12×5/2=30r=2故S阴=S△-πr²=30-12.56=17.44再问:我可以加你QQ吗,这样问你就

如图已知圆O是△ABC的内切圆,且∠A=50°,则∠BOC多少度?

内切圆圆心是三角形各角平分线的焦点∠A=50°,∠B+∠C=130°1/2(∠B+∠C)=65°所以,∠BOC=115°

如图,在△ABC中,∠C=90°,⊙O为它的内切圆,切点分别为E、F、D,斜边AB=10,△ABC的内切圆半径为1

∴△ABC的周长=AB+BC+AC=AB+(BD+CD)+(AE+CE)=AB+(BF+CE)+(AF+CE)=AB+(BF+AF)+2CE=AB+AB+2CE=10+10+2=22再问:∴△ABC的

如图直角三角形ABC中 ∠B=30 ∠C=90 圆O是它的内切圆 半径为1 则这个直角三角形的面积是多少

内切圆半径=(AC+BC-AB)/2=1即:AC+BC-AB=2又:AB=2AC,BC=根号3AC故有:AC+根号3AC-2AC=2AC=2/(根号3-1)=根号3+1所以,BC=根号3*(根号3+1

如图,在RT△ABC中,∠C=90°,BC=a,AC=b,AB=c,圆O为RT△ABC的内切圆,求圆O的半径

设圆O的半径为r,则:S△OAB+S△OBC+S△OAC=S△ABC,即:cr/2+ar/2+br/2=ab/2,r(a+b+c)=ab,圆O的半径=ab/(a+b+c)

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

如图,圆心O是△ABC的内切圆,切点分别为点D,E,F,如果,弧DE=130°,求∠B的度数

连接od,oe,角DOE+角DBE=180度,则角B=50度平面四边形内角和为360度,而D、E为切点,所以OD垂直于AB,OE垂直于BC.明白了吗?

如图,圆O是RT三角形ABC的内切圆,D,E,F为切点,若AD=6,CD=4,求内切圆的直径

D=4设半径BE=BF=X(4+X)平方+(6+X)平方=10平方一个解是22X=2*2=4

如图⊙O为等边三角形的内切圆,三角形的边长为4根号三求⊙O半径

已知,等边三角形ABC边长为4根3..则面积s=1/2(4根3)²sin60°=12根3..设△ABC的内切圆的半径为R,则s△ABC=3×(1/2×4根3R)=6根3R.所以R=2...即

如图,圆O为△ABC的内切圆,且于AC,AB,BC分别相切于点D,E,F.

1)1/2*8*r=12得r=32)1/2*L*R=S连接AO、DO,CO,FO,BO,EO三角形ABC的面积=三角形AOB的面积+三角形AOC的面积+三角形COB的面积即S=1/2*AB*OE+1/

如图,已知圆o是边长为2的等边三角形ABC的内切圆,则圆O的面积

显然圆的半径=1/tan30=根号3于是面积为3π再问:说仔细点再答:⊙﹏⊙b汗开始比错了是π/3角BAC=60度因为等边三角形角EAB=30度且DE垂直AD(DE为内切圆半径)D为AB中点所以在直角

如图,在△ABC中,∠C=90°,⊙O为它的内切圆,切点分别为EFD,斜边AB=10,△ABC的内切圆半径为1求圆周长

解连接AO,BO,CO我们可以得到几组全等三角形AOF全等AOEBOF全等BODCOD全等COE所以AF=AEBF=BDOE=DC=OD=EC=1AF+BF=AB=10AE+EC+BD+DC=10+1

如图,圆O是Rt△ABC的内切圆,∠ACB=90°,AB=13,AC=12则图中阴影部分的面积为

三角形内切圆半径公式r=2S△/(AB+BC+AC)求得BC=5S△=AC·AB=12×5/2=30r=2故S阴=S△-πr²=30-12.56=17.44

如图,已知⊙O是△ABC的内切圆,且∠BAC=50°,则∠BOC为______度.

∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-50°)=65°,∴∠BOC=180°-65°=115°.

如图,已知在△ABC中有内切圆圆O,分别切三边于K、L、M,圆O的面积为27π,∠MKL=60°,BC:AC=8:5,求

BC=24,AC=15,AB=21.有圆O的面积为27π,∠MKL=60°,可得圆的半径为3√3,LM=MC=LC=9,∠C=60°.设BL=x,AM=y,则BC=9+x,AC=9+y∴(9+x):(

如图,已知在△中有内切圆O,分别切三边于K,L,M圆O的面积为27π,∠MKL=60°,BC:AC=8:5

BC=24,AC=15,AB=21.有圆O的面积为27π,∠MKL=60°,可得圆的半径为3√3,LM=MC=LC=9,∠C=60°.设BL=x,AM=y,则BC=9+x,AC=9+y∴(9+x):(

如图,⊙O为正△ABC的内切圆,四边形EFGH为⊙O的内接正方形,且EF=根号2,求正三角形.

∵EFGH是正方形,且EF=√2∴正方形对角线=EG=FH=√[(√2)²+(√2)²]=2∵圆O是正方形EFGH的外接圆,又是正△ABC的内切圆∴圆直径=2,半径=1设AB切圆于

如图,已知⊙O是边长为2的等边△ABC的内切圆,则⊙O的面积为 ___ .

设BC切⊙O于点D,连接OC、OD;∵CA、CB都与⊙O相切,∴∠OCD=∠OCA=30°;Rt△OCD中,CD=12BC=1,∠OCD=30°;∴OD=CD•tan30°=33;∴S⊙O=π(OD)