如图,在Rt三角形ABC绕点A逆时针旋转44°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:09:34
如图RT三角形A'BC是由RT三角形ABC绕点B顺时针旋转所得,且ABC在同一直线上

数理答疑团为您解答,希望对你有所帮助.∠C=90°,BC=2,AB=4,则∠A’BC‘=∠ABC=60°,AC=2√3扫过面积=πAB²/2-60πAB²/360+S△A’BC‘=

如图,将Rt三角形ABC绕点C顺时针旋转90°到三角形A'B'C的位置,M是A'B'的中点,连接A

∵△ABC是直角三角形,∠ACB=90°,AB=10,BC=6,∴AC=8.过M点作AC的垂线,垂足设为N,那么MN平行于A′C,且N是B′C的中点,∴NC=1/2B′C=1/2BC=3,MN=1/2

已知如图在rt三角形ABC,角ACB=90度,将三角形ABC绕点C按顺时针方向旋转得三角形A1B1C,CB1,A1B1,

跟据旋转的性质,对应边所成的角都等于旋转角∴∠CB1A1=∠CBA∵∠B1DE=∠BDC∴∠BCB1=∠DEB1∵∠DEB1=∠AB1D∴∠BCB1=∠AB1D∴AB1∥BC

如图1所示,在rt三角形abc中,ab=ac,角bac=90度,过点a的直线l绕点a旋转,bd垂直l于点d,ce垂直l于

呵呵,就是这个嘛,http://www.qiujieda.com/math/49172/,自己领悟下,会帮助你的,这儿相当多的数学物理化学题目的,你自己多去利用利用吧,采纳哈

如图,RT三角形ABC绕点A旋转90度得到三角形AED,试用此图证明勾股定理

S梯形ACDB'=1/2(b+a+b)*b=b^2+1/2abSΔABC=1/2ab,SΔBDB'=1/2(b-a))(a+b)=1/2(b^2-a^2),SΔABB'=1/2

如图,在Rt三角形ABC中,∠ACB=90°,∠A<∠B,沿三角形ABC的中线CM将三角形CMA折叠,使点A落在点D处,

∵M是AB的中点,∠ACB=90°∴CM=AM∴∠A=∠ACM∵折叠∴∠ACM=∠DCM∵CD⊥AB∴∠A+∠ACM+∠DCM=90°∴3∠A=90°∴∠A=30°∴BC:AC=1:根号3

如图,在RT三角形ABC中,∠C=90°,M为AB边上中点,将RT三角形ABC绕点M旋转,使点C与点A重合得到三角形DE

分析:(1)根据旋转的性质:旋转前后的图形全等,得到对应角和对应边之间的关系.(2)根据旋转的性质用同一个未知数表示出有关的边,根据勾股定理列方程计算.(1)∵Rt△ABC绕点M旋转得△DEA,∴△A

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

已知:如图,在Rt三角形abc中,∠acb=Rt∠,∠a=30°,cd⊥ab于点d,求证三角形abc相似三角形cdb

因为CD⊥AB所以∠CDB=Rt∠所以∠ACB=∠CBD又因为∠∠B=B所以△ABC相似于△CBD(本题于∠A=30°无关)

数学如图在RT三角形ABC

过C作CD⊥AB,D为垂足∵MN⊥AB∴CD//MN∴∠DCN=∠N∵CN平分∠ACB∴∠ACM+∠MCN=∠ACN=∠BCN=∠DCN+∠BCD∵CM是斜边AB上的中线∴AM=BM=CM∴∠A=∠A

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

已知在下图中,将一副三角形(RT△ABC和△DEF)如图①摆放点E,A,D,B在一条直线上且D

∵∠A=∠ADM=30°,∴MA=MD.又MG⊥AD于点G,中的结论成立.如图9,在Rt△AMG中,∠A=30三角形DGM和NHD相似所以DH=(根号3)MGAG=(

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

如图,在rt三角形abc中,角bac等于90度,ac等于2a

解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件

如图在rt三角形abc中,角abc=90°,角c=30°,ac=12cm,点E从点A出发沿.

证明:∵∠ABC=90°          ∴AB⊥BC   &nbs

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的