如图,在⊙O中,AB=2CD.试判断AB弧与2倍CD弧是否相等.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:01:34
已知,如图,在圆O中,弦AD=BC,连接AB,CD,求证AB=CD

∵弦AD=弦BC∴∠AOD=∠BOC∴∠AOD+∠AOC=∠BOC+∠AOC即∠COD=∠AOB∴弦AB=弦CD(定理:在同圆或等圆中,若两个圆心角、两条弧、两条弦中有一组量相等,则对应的其余各组量也

如图,在圆O中,AB=CD.求证:BC=AD.

解题思路:本题主要考察了圆中,弧与弦的关系计算问题,等弦所对的弧相等,等弧所对的弦也相等。解题过程:证明:∵AB=CD∴弧AB=弧CD∴弧AB-弧BD=弧CD-弧BD∴弧AD=弧BC∴AD=BC

如图,在⊙O中,直径AB=10,弦CD⊥AB,垂足为点E,若OE=3,则CD=______.

连接OC,∵直径AB=10,∴OC=12AB=5,∵CD⊥AB,OE=3,∴CD=2CE,在Rt△OCE中,CE2+OE2=OC2,即CE2+32=52,解得CE=4,∴CD=2CE=2×4=8.故答

已知,如图,在圆O中,弦AB=CD,求证AD=BC

因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

证明:∵AD=BC,∴AD=BC.∴AD+BD=BC+BD.∴AB=CD.∴AB=CD.

如图,已知在圆O中,AB=CD,AB、CD的延长线相交于圆O外一点P,求证PA=PC

证明:作OE⊥AB于E,OF⊥CD于F.则AE=BE;CF=DF.∵AB=CD.∴OE=OF;AE=CF.连接PO,则PO=PO,Rt⊿PEO≌RtΔPFO(HL),得PE=PF.故:PE+AE=PF

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

已知如图在圆O中AD=BC,求证AB=CD

证明:连接BD∵AD=BC∴∠ABD=∠CDB【等弦所对的圆周角相等】∵∠A=∠C【同弧所对的圆周角相等】∴⊿ADB≌⊿CBD(AAS)∴AB=CD

如图,在⊙O中,弦AB.CD相交于点P,且AB=CD.求证AC=BD.

因为AB=CD,所以弧AB=弧CD,当然弧AC=弧BD,也即AC=BD再问:如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,求证AC平分∠DAB.再问:再答:

已知如图,在圆o中,弦AB‖CD,求证:AD=BC

因AB//CD推出角AOC=角BOD推出弧AC=弧BD(相等的圆心角对应的弧长相等)连接ACBD则AC=BD在证明三角形ACD全等于三角形BDC就行了刚才的写错了

如图,在⊙O中,弦AB与DC相交于点E,AB=CD.

(1)证明:∵AB=CD,∴AB=CD.∴AB-AD=CD-AD.∴BD=CA.∴BD=CA.在△AEC与△DEB中,∠ACE=∠DBE,∠AEC=∠DEB,∴△AEC≌△DEB(AAS).(2)点B

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图,在圆o中,ab=cd,ab与cd交于p,ap与dp关系

过O作OE⊥AB于E,OF⊥CD于F,则E,F为AB,CD中点,连OP.AB=CD,所以OE=OF.再由勾股定理(OP=OP,OE=OF)得PE=PF.AP=AE+PE=DF+PF=PD.

已知:如图,在⊙O中,弦AB=CD.

证明:(1)∵在⊙O中,弦AB=CD,∴弧AB=弧CD,∵弧BC=弧CB,∴弧AC=弧BD;(2)∵弧AC=弧BD,∴∠AOC=∠BOD.

如图,在圆O中,弦AB与CD相交于P,、 1 若AB,CD与OP成等角,求证:AB=CD 2 若AB=CD,求证:AC=

证明:1.过O作OE⊥AB于E点,过O作OF⊥CD于F点在直角三角形OPE与直角三角形OPF中∵AB,CD与OP成等角∴∠OPE=∠OPF又OP是公共边∴直角三角形OPE≌直角三角形OPF(角,角,边

已知:如图,在⊙O中M,N分别为弦AB,CD的中点,AB=CD,AB不平行于CD.

证明:连接OM,ON,AO,OC,如图所示,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,又AB=CD,∴AM=CN,在Rt△AOM和Rt△CON中,∵OA=OCAM=CN,∴Rt△AOM

如图 在圆o中 cd是直径 ab是弦ab⊥cd于M,OM=3,DM=2,求弦AB的长

OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.

如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.

证明:(1)∵弧AD=弧CB,∴∠MCA=∠MAC.∴△MAC是等腰三角形.(2)连接OM,∵AC为⊙O直径,∴∠ABC=90°.∵△MAC是等腰三角形,AM=CM,OA=OC,∴MO⊥AC.∴∠AO