如图,在圆o中,两弦ab与cd的中点分别是p.q,且弧ab=弧cd,连接pq

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:36:43
如图,在圆O中,AB是直径,CD是弦,CE垂直CD与点c,交AB与点E,DF垂直CD,交AB与点F.求证AE=BF

证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以

已知,如图,在圆O中,弦AD=BC,连接AB,CD,求证AB=CD

∵弦AD=弦BC∴∠AOD=∠BOC∴∠AOD+∠AOC=∠BOC+∠AOC即∠COD=∠AOB∴弦AB=弦CD(定理:在同圆或等圆中,若两个圆心角、两条弧、两条弦中有一组量相等,则对应的其余各组量也

如图,在圆O中,两弦AB与CD的中点分别是P,Q,且弧AB=弧CD,连接PQ.求证:∠APO=∠CQP

连接OP,OQ因为P、Q分别为AB、CD的中点所以OP⊥AB;OQ⊥CD;又OP=OQ,∴∠OPQ=∠OQP∴∠APQ=90°—∠OPQ∠AQP=90°—∠OQP即证:∠APQ=∠AQP

已知,如图,在圆O中,弦AB=CD,求证AD=BC

因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

如图,在圆O中,弦AB与CD相交于E,AB=CD.求证:三角形AEC全等三角形DEB

AB=CD弧AB=弧CD弧AC=弧CD-弧AD=弧BD∴BD=CA∠ABD=∠ACD=弧AD∠AEC与∠DEB对顶角相等∴ΔAEC≌ΔDEB

如图,圆o中弦AB=CD,且AB与CD交于E.求证;DE=AE

连接BC,因为AB=CD,所以AB对应的弧AB=CD对应的弧CD,弧AD是公共弧,所以:弧AB-弧AD=弧CD-弧AD即:弧BD=弧AC所以:弧BD对应的弦BD=弧AC对应的弦AC即:BD=AC又因为

已知如图,在圆o中,弦AB‖CD,求证:AD=BC

因AB//CD推出角AOC=角BOD推出弧AC=弧BD(相等的圆心角对应的弧长相等)连接ACBD则AC=BD在证明三角形ACD全等于三角形BDC就行了刚才的写错了

如图,已知在⊙O中,AB,CD两弦互相垂直于点E,AB被分成4cm和10cm两段.

(1)过点O分别作OM⊥AB于点M,ON⊥CD于点N,则∠ONE=∠OME=90°,∵AB⊥CD,∴∠NEM=90°,∴四边形ONEM是矩形,∴ON=EM.∵OM⊥AB,∴AM=12AB=12(4+1

如图 在圆o中 弦ab与dc相交于点e,AB=CD试说明BD与CA的大小关系

连接bc,abc和dcb全等,可证再问:第二问详细再答:继续可证deb和aec全等(角角边),be=ce,连co,bo,sss,可得,beo全等ceo,对称

如图,在⊙O中,弦AB与DC相交于点E,AB=CD.

(1)证明:∵AB=CD,∴AB=CD.∴AB-AD=CD-AD.∴BD=CA.∴BD=CA.在△AEC与△DEB中,∠ACE=∠DBE,∠AEC=∠DEB,∴△AEC≌△DEB(AAS).(2)点B

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图,在圆o中,ab=cd,ab与cd交于p,ap与dp关系

过O作OE⊥AB于E,OF⊥CD于F,则E,F为AB,CD中点,连OP.AB=CD,所以OE=OF.再由勾股定理(OP=OP,OE=OF)得PE=PF.AP=AE+PE=DF+PF=PD.

如图,在圆O中,弦AB与CD相交于P,、 1 若AB,CD与OP成等角,求证:AB=CD 2 若AB=CD,求证:AC=

证明:1.过O作OE⊥AB于E点,过O作OF⊥CD于F点在直角三角形OPE与直角三角形OPF中∵AB,CD与OP成等角∴∠OPE=∠OPF又OP是公共边∴直角三角形OPE≌直角三角形OPF(角,角,边