如图,在抛物线Y=-X的平分上取三点A,B,C设点A,B的横坐标分别为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:31:46
设B(x,8-x^2)(x>0)AO=xAD=2xAD=AB2x=8-x^2x^2+2x-8=0(x+4)(x-2)=0x=2边长为4面积4*4=16
EF=3,所以C点坐标为(0,3)抛物线经过C点,所以3=-0²+b*0+c所以c=3OF=2,EF=3,所以E点坐标为(2,3)抛物线经过E点,所以3=-2²+b*2+3所以b=
由y=2x−4y2=4x得:4x2-20x+16=0,即x2-5x+4=0,所以A(4,4)、B(1,-2).故|AB|=35.…(4分)设点P(t2,2t)(-1<t<2),则P到直线l的距离为:d
设点B横坐标为m,C点纵坐标为n.则点B纵坐标为1/8(m+1)^2-2,A点坐标为(-1,-2).B(m,1/8(m+1)^2-2),C(0,n).因此得(m-0)^2+[1/8(m+1)^2-2-
把点B(0,-1)代入y=ax2+bx+c中得:c=-1,∴b=4a因为顶点A在x轴上,所以△=0,即b²-4ac=0b²+4a=0b=4ab²+b=0b1=0,b2=-
(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-
带入Y=0,到抛物线y=1/2x2+3/2x-2,得X1=1,X2=-4,即坐标点A(-4,0),B(1,0)将点A带入直线y=-x+m,得m=4,则,直线y=-x-4,斜率k=-1,即直线与x轴的夹
设P(x,y)则y^2=8x则x>=0|PQ|^2=(x-a)^2+y^2=x^2+(8-2a)x+a^2=(x-(a-4))^2+8(a-2)当a-4=0时,最小值在x=a-4时取得,最小值是2√2
1)抛物线y=2ax2-6ax+6与y轴的公共点为A即X=0时Y=6A(0,6)则B点的纵坐标为66=2ax2-6ax+6X=0或X=3B(3,6)过C点作Y轴的平行线交X轴于D点三角形AOB相似于三
答:y=-x²+2x+3=0x²-2x-3=0(x-3)(x+1)=0x=-1或者x=3点A(-1,0),点B(3,0),点C(0,3),点D(1,4)BC斜率Kbc=-1,CD斜
(1)∵四边形OCEF为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,得c=33=−4+2b+c,解得b=
(1)设L2的解析式为y=ax2+bx+c由题意,得c=2,-b/2a=1,a=-1所以b=2所以y=x2+x+2y=-x2+x+2=-(x-1/2)2+9/4所以抛物线的对称轴为x=1/2设L3的顶
(1)抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,-1),∴b^=4ac,c=-1,又b=-4ac,∴b^=-4a=-b,a≠0,∴b=-1,a=-1/4,∴A(-2,0).(2
分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得
y=-x²+x+2,那么半个周长=x+y=-x²+x+2+x=-x²+2x+2=-(x²-2x+1)+3=-(x-1)²+3,所以当x=1时周长最大,
(1)∵OM=ON=4,∴M点坐标为(4,0),N点坐标为(0,4),设抛物线解析式为y=a(x-4)2,把N(0,4)代入得16a=4,解得a=14,所以抛物线的解析式为y=14(x-4)2=14x
1根据抛物线,求出A(-1,0)B(3,0)2设M(x0,y0)P(0,y)3PMAB构成平行四边形,用向量表示两组对边向量PA=(-1,-y),BM=(x0-3,y0);向量PB=(3,-y),AM
直线BC的方程:y=-x+3,设与直线BC平行的直线的方程为:y=-x+a,它与抛物线的交点为P所以,当这条直线与抛物线相切时,三角形的面积最大.此时联立直线与抛物线方程得:-x²+2x+3
A,B,C坐标为(-1,0)(0,-2)(3,0),D坐标(1.-2)作AD中垂线,求出中垂线方程,于原抛物线方程求解,有解就是P点我看不见图,不知哪个是A