如图,射线BD是MBN的平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:35:01
如图,△ABC中,AD是∠CAB的平分线,BD是△ABC的外角平分线,AD与BD交与于点D

∠D的度数为:70/2=35°.设,∠CAD=∠DAB=∠1,∠CBD=∠DBE=∠2.∠ABC=180-(∠C+2∠1),而,∠ABC=180-2∠2,则有∠C+2∠1=2∠2,∠2-∠1=∠C/2

如图 已知AD是三角形ABC的内角平分线,求证AB/AC=BD/CD.

这是角平分线定理用正玄定理AB/sin∠ADB=BD/sin∠BAD(1)AC/sin∠CDB=CD/sin∠CAD(2)AD是角平分线,sin∠BAD=sin∠CAD∠ADB+∠CDB=180sin

如图,AD是△ABC的角平分线,证明:AB/AC=BD/CD

作CE平行AB,E在AD延长线上由相似关系之AB/CE=BD/CDAD是△ABC的角平分线故角BAD=角DAC=角E,AC=ECAB/AC=BD/CD

如图,已知BD是∠ABC的平分线,AB=BC.点D在射线BD上,PM⊥AD于M,PN⊥CD于N.求证PM=PN.拜托有谁

∵∠ABD=∠CBD,AB=CA,BD=BD∴△BAD≌△BCD∴∠ADB=∠CDB∴BD为∠ADC的平分线∵点D在BD上,且PM⊥AD于M,PN⊥CD于N∴PM=PN

如图,OC为角AOB内的一条射线,当角AOC=角BOC时,称射线OC是角AOB的角平分线.

(3)=;=(4)角平分线上的任一点到角两边的距离相等.

怎么证明角的平分线?如图,OB=2OA,BC=2AC,如何证明射线OC是角AOB的平分线?

证明:过B作BD||OA交OC的延长线于点D如果学过相似形,直接证明△OCA相似△DBC证得BD=2OA所以BD=OB所以角BDC=角BOC=角AOC所以是平分线如果未学相似形取BC中点E,用EF||

如图:op是mon的平分线,射线在oq的mop内部,or是moq的平分线,已知noq=60度,求por的度数

设NOP=θ,则MOP=θ,POQ=60-θMOQ=MOP-POQ=θ-(60-θ)=2θ-60因为OR是MOQ的平分线所以QOR=MOQ/2=θ-30POR=POQ+QOR=60-θ+θ-30=30

如图,三角形abc中,ad是角cab的平分线,bd是三角形abc的外角平分线,ad与bd交于点d

∵∠CBE=∠BAC+∠C,BD平分∠CBE∴∠DBE=∠CBE/2=(∠BAC+∠C)/2∵AD平分∠BAC∴∠DAB=∠BAC/2∴∠DBE=∠DAB+∠D=∠BAC/2+∠D∴∠BAC/2+∠D

如图,OC是∠AOB内一条射线,OD,OE别是∠AOC和∠BOC的平分线

看不到图啊再问:亲,你有邮箱吗?把号给我,我发给你再答:啊。。。不好意思啊,那天后来忘了开电脑了

如图,角AOB是一个平角,OC是一条射线.(OE是角AOC的平分线;OF是角BOC的平分线急急急急急快快快

∵OE是角AOC的平分线;OF是角BOC的平分线∴∠EOC=∠EOA=1/2×∠AOC∠FOC=∠FOB=1/2×∠BOC∵∠AOC+∠BOC=180º∴∠EOF=∠EOC+∠FOC=1/2

如图,AOB是平角,OD,OC,OE是三条射线,OD是AOC的平分线,OE是BOC的平分线,求DOE

DOE=(1/2)AOC+(1/2)BOC=(1/2)(AOC+BOC)=(1/2)AOB=(12/)×180°=90°

如图,∠MON=70°,点A、B分别在射线OM、ON上移动,BD是∠NBA的平分线,BD的反向延长线与∠BAO的平分线相

∠C的大小保持不变.理由:∵∠ABN=90°+∠OAB,AC平分∠OAB,BD平分∠ABN,∴∠ABD=1/2∠ABN=1/2(90°+∠OAB)=45°+∠OAB/2,即∠ABD=45°+∠CAB,

如图,角MON=90度,点A、B分别在射线OM、ON上移动,BD是角NBA的平分线,BD的反向延长线与角BAO的平分线相

再答:再问:N.M反了再答:等一下再问:唉,我刚做出来再答:

如图,角mon等于70度,A,B分别在射线OM,ON上移动,BD是角NBA的平分线,BD的反向延长线BC与角BAO的平分

角C不变.角MBN=角MON(70°)+角OAB,BD是角平分线,所以角MBD=35°+1/2角OAB又AC是角BAO的角平分线,所以角BAC=1/2角BAO又因为角MBD=角C+角BAC=角C+1/

如图,CD是△ABC的外角∠ACE的平分线,BD是∠ABC的平分线.

∵角平分线∴∠ABC=2∠DBC∠ACE=2∠DCE∠ACD=∠DCE∵∠A=∠ACE-∠ABC∴∠A=2∠DCE-2∠DBC∵∠D=∠DCE-∠DBC∴∠A=2∠D∵∠DCE﹥∠D∠DCE=∠ACD

如图,角MON=60度,点A,B分别在射线(不含端点)OM,ON上运动,BD是角NBA的平分线,BD的反向延长线与角BA

(1)∠ABO=180°-2∠DBN(2)猜想:∠C不随A、B的运动而变化.理由如下:由题,设∠ABD=∠DBN=α,∠CAB=∠CAO=β,∠C简写为C.C+β=α60°+2β=2α所以C=30°为

如图,OC是∠AOB内一条射线,OD,OE别是∠AOC和∠BOC的平分线.

我也在想和你一模一样的题.可我只知道第四题(互补)

如图,bd是等边三角形abc的角平分线,e是bc延长线上的一点

∵△ABC是等边三角形,∴AB=BC、∠ABC=∠ACB=60°.∵AB=BC、AD=CD,∴∠DBE=∠ABC/2=30°.∵CE=CD,∴∠CDE=∠CED.由三角形外角定理,有:∠ACB=∠CD