如图,将抛物线c1:y=负根号3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:10:18
已知抛物线C1:y=x*2-2x-3,将C1绕点(0,-2)旋转180°得抛物线C2,求C2解析式

已知抛物线C1:y=x*2-2x-3,变形为C1:y=(x-1)*2-4,则其顶点为A(1,-4);与x轴的交点为B(3,0),C(-1,0);与y轴的交点为D(0,-3)A、B、C、D四点绕点(0,

将抛物线C1:y=-根号3X2+根号3沿x轴翻折,得抛物线C2

沿x轴翻折,将原式中的y变为-y即可:-y=-√3x²+√3y=3x²-√3

如图 y=(根号3)/3x+b ,经过点B(-根号3,2)且与x轴交于点A,将抛物线y=1/3x平方 沿x轴作左右平移后

1.y=√3/3x+b,2=√3/3(-√3)+b,b=3,∴y=√3/3x+3,tan∠BAO=√3/3,∠BAO=30°,∵∴2.抛物线y=1/3x^2平移后得到抛物线为y=1/3(x-a)^2,

如图,在平面直角坐标系中,抛物线y=(负4分之根号3)x^2+(2分之根号3)x+2倍根号3与y轴于A点,与x轴交于B、

(1)A(0,2√3)B(-2,0)C(4,0)D(2,2√3)(2)X、Y轴交于O,过E做EQ⊥BC于Q,延长MP交AD于G由题目可知EQ为△AOB的中位线,可得EQ=OA的一半=PM=√3;∵MN

如图 y=根号3x/3+b ,经过点B(-根号3,2)且与x轴交于点A,将抛物线y=1/3·x平方 沿x轴作左右平移后得

此题将抛物线与直线相结合,涉及到动点问题,翻折变换问题,有一定的难度.尤其(3)题是一道开放性问题,需要进行探索.谢谢    点击图片可放大 &nbs

(2013•百色)如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7

 向右平移y=(x-1)^2+3 整理得:y=x^2-2x+4  向下平移y=x^2-2x+4-7     &

35.已知:如图,抛物线C1、C2关于x轴对称;抛物线C1、C3关于y轴对称.抛物线C1、C2、C3与x轴相交于A、B、

...sick.那么大个题目.--算啦~LZ.我帮你拉~菱形:ECFB等腰梯形:EBMH平行四边形:CMHA梯形:OFHN(这个想必就不用解释了.LZ只要在图中找到那几个点并且画出来就可以看清了)(2

如图示:己知抛物线C1,C2关于x轴对称,抛物线C1,C3关于y轴对称.如果抛物线C2的解析式是y=-34(x-2)2+

抛物线C2的解析式是y=-34(x-2)2+1那么抛物线C3的二次项系数是34C2的顶点是(2,1),则C1的顶点是(2,-1)那么抛物线C3的顶点是(-2,-1)∴抛物线C3的解析式是y=34(x+

如图,已知抛物线y =a(x-1)2+3根号3

图呢,题呢?再问:唉。。。我准备问度娘了再答:建议你用http://www.jyeoo.com/可信,标准再问:谢谢啊

将抛物线c1:y=-√3x^2+√3沿x轴翻折,得抛物线c2(1)请直接写出抛物线c2的关系式(2)现将抛物线C1向左

(1)y=√3x²-√3(2)①令-√3x²+√3=0x=±1所以C1与x轴的两个交点为(-1,0),(1,0)∴A(-1-m,0)B(1-m,0)同理:D(-1+m,0)E(1+

如图 两条抛物线的表达式分别为y=2x^2和y=1/2x^2,则图中C1,C2所对应的函数表达式C1:y=______;

采用代入法,当X=1时,由y1=2x^2得y1=2;由y2=1/2x^2得y2=1/2因为x=1时y1>y2所以C1:y=2x^2;C2:y=1/2x^2

已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1- 根号3 ,0)和点B,将抛物线沿x轴向上翻折,

(1)由题意得,点P与点P'关于x轴对称所以由P'(1,3)得,P(1,-3)将A(1-√3,0),P(1,-3)代入方程y=a(x-1)^2+c中3a+c=0c=-3解得,a=1,c=-3所以原抛物

如图,已知抛物线C1的方程为:y=x2,抛物线C1关于直线y=1的对称曲线为C2,曲线C1与C2的交点为A,B

由定义易得到两条曲线的方程的求导结果为y'=2x与y'=-2(x-2)设直线l与曲线C1相切于点(x0,x0^2),则直线l的方程为y-x0^2=2x0(x-xo),令

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a(x-1)^2-5,C1与C2的交点为A,B,点A的坐标是(

(1)∵点A(2,4)在抛物线C1上,∴把点A坐标代入y=a(x+1)2-5得a=1,∴抛物线C1的解析式为y=x2+2x-4,设B(-2,b),∴b=-4,∴B(-2,-4);(2)①如图∵M(1,

如图1,点A为抛物线C1:y= 1 2 x2-2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另

(1)∵当x=0时,y=-2;∴A(0,-2).设直线AB的解析式为y=kx+b,则:-2=b0=k+b,解得k=2b=-2∴直线AB解析式为y=2x-2.∵点C为直线y=2x-2与抛物线y=1/2x

已知抛物线C1:y=x*2-4x+3,将C1绕点P(t,1)旋转180°得C2,若C2的顶点在抛物线C1上,求C2解析式

已知C1:y=x^2-4+3变形得:y=(x-2)^2-1所以C1的顶点为(2,-1)将C1绕点P(t,1)旋转180°得C2也就是说,C1和C2关于P点中心对称.所以C2的顶点坐标(a,b)和C1的

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a

解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略