如图,已知def分别是锐角三角形abc三边bc,ca,ab上的点,且

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:36:03
已知:如图,△ABC为等边三角形,点D、E、F分别在BC、CA、AB上,且AF=BD=CE,求证:△DEF是等腰三角形

△ABC为等边三角形AB=BC=CAAB=AF+BF=BD+CD=CE+AE∵AF=BD=CE∴BF=CD=AE∠A=∠B=∠C=90度所以三角形AEF,BDF,CED全等即有对应边EF=FD=DE即

已知,如图,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.求证 △DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图 三角形ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF三角形DEF是等边三角形吗?点

证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所

已知:如图△ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是等边三角形

已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

已知:如图,点A、B、C分别在三角形DEF上,且AC//DE,EF//AB,BC//DF

AB//DE,EF//BC,角BAC=角EDF,角BCA=角EFD,AC=DF,三角形ABC≌三角形DEF.

已知:如图△ABC中,D,E,F分别是三边种点,△DEF面积为4cm²,求△ABC的面积?

△DEF和△ABC相似,且相似比是1/2所以:其面积比是1/4,所以:S△ABC=4S△DEF=4*4=16(平方厘米)

如图,已知长方形ABCD中,点E.F分别在AB.BC上,△DEF为等腰直角三角形,∠DEF=90º.AD+CD

因为△DEF是等腰直角三角形,所以DE=EF,∠DEF=90°,那么∠DEA+∠BEF=90°,因为△BEF是直角三角形,那么∠BEF+∠BFE=90°,所以∠DEA=∠BFE,另外,∠DAE=∠EB

已知:如图,等边三角形DEF的顶点分别在等边三角形ABC的边上.求证:AD=BE=CF

不妨设D,E,F分别在边AB,BC,AC上.∵△ABC,△DEF为正三角形,∴∠A=∠B=∠C=60∠EDF=∠FED=∠EFD=60∠,DE=DF=EF∴∠BDE+∠ADF=180-60=120∠A

如图,已知△ABC∽△DEF,△ABC与△DEF的相似比是3:2,点G,H分别在BC,EF上,且BG:GC=EH:HF,

3:2百分之百的除了面积比是6::4其他的比全是3:2因为△ABC∽△DEF△ABC与△DEF的相似比是3:2且BG:GC=EH:HF而GC=BC-GCHF=EF-HE所以GC:HF=3:2因为AC:

如图,已知点def分别是△abc的bc,ca,ab上的点,de∥ba,df∥ca,求证∠fde=∠a

证明:因为de平行ba所以角dec=角a又因为df平行ca所以角fde=角dec所以角fde=角a

如图,已知I是△ABC的内心,AI,BI,CI的延长线分别交△ABC的外接圆于点DEF,求证EF⊥AD

连结AEAF.角CAE=CBE角FEA=FCA所以角DCA+CAE+FEA=DCA+CBE+FCA=1/2(BAC+CBA+BCA)=90°于是:DAE+FEA=90°终于垂直.完工

如图,已知三角形abc是锐角三角形分别以ab,ac为边向外侧作等边三角形abm和等边三角形can.DEF分别是mb,BC

证明:做AB,AC,的中点记为G,H.连接DG,GE,EH,HF.则DG,GE,EH,HF均为三角形的中线由三角形中线定理的DG平行且等于1/2AM=1/2AB=EHDG=EH同理,GE=FH在三角形

已知:如图  △ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是

∵△ABC为等边三角形∴AB=BC=CA∴AB=AF+BF=BD+CD=CE+AE∵AF=BD=CE∴BF=CD=AE∵∠A=∠B=∠C=60度∴△AEF≌△BDF≌△CED即有对应边EF=FD=DE

已知:如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的△DEF,△DEF是等边三角形吗?你还能

证明:∵△ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的△DEF∴∠CAE=∠ACB=60度,∠DAB=∠ABC=60度,∠ACE=∠CAB=60度,∠BCF=∠ABC=60度,∠

已知:如图,在三脚型ABC中,D E F分别是各边的中点,AH是边BC上的高.求证:∠DHF=∠DEF

△ABC中,D、F、E分别是各边中点一直线DE∥AB,EF∥SC,FD∥AC二AF=FHAE=EH△AFHHE△AEH是等边三角形∠FAH=∠FHA∠EAH=EHA即∠FAE=∠BAC=∠FHE因∠D

已知:如图,在△ABC中,D、E、F分别是各边的中点,AH是边BC边上的高 求证:∠DHF=∠DEF

D、E、F分别是各边的中点,所以DE//AF,AD//FE,所以∠DAF=∠DEF连结DF,AH是边BC上的高,所以AD=DH,AF=HF,所以△ADF全等△DHF,所以∠DHF=∠DAF所以∠DHF