如图,已知e是正方形abcd的对角线bd的黄金分割点,ae交bc的延长线于点f
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:33:04
正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP&
证明:将AE与DF的交点设为O∵正方形ABCD∴∠ADC=∠C=90,AD=CD=BC∴∠DAE+∠AED=90∵E是CD的中点、F是BC的中点∴DE=CD/2,CF=BC/2∴DE=CF∴△ADE≌
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
(1)证明:连BD,AC交于O.∵ABCD是正方形∴AO=OCOC=AC/2取PC中点M.连EM.则EM是三角形PAC的中位线.EM∥AC且EM=AC/2∴EM∥OC且EM=OC连EO.则EOCM是平
很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形
∵正方形ABCD的面积为5∴BC=根号5正方形CEFG的面积是2∴CE=根号2△BDG的面积=(根号5-根号2)×根号5=5-根号10=5-3.162=1.838
(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
(1)取AD的中点O,由正△PAD可得PO⊥AD,∵平面PAD⊥平面ABCD,∴PO⊥平面ABCD,∴PO⊥CD.又∵CD⊥AD,PO∩AD=O,∴CD⊥平面PAD,∴CD⊥AE.(2)由(1)可知:
如图所示设边长为a则bc=a,ch=a/2得bh=√5a/2则ck=√5a/5得jg=√5a/10则bj=√5a/5故阴影部分边长为√5a/5故s阴影部分=a^2/5再问:答案呢。。。。再答:把a=8
你能求出中间正方形IMJK的面积吗?问题补充:要过程,详细一点,谢谢了先求AF再求AI最后求FJ答案略
解①:设AE=a,则AB=2a,根据勾股定理:AE²+AB²=BE²a²+(2a)²=6²5a²=36a²=36/5a=
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
(1)当CF=4时,由切线的判定定理可知,AD,BC均是半圆的切线,故FB=FM,AE=EM.设AE=EM=X,过E作BC边上的高,由勾股定理可列:(X-2)^2+6^2=(2+X)^2解得:X=4,
证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.  
这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相
igxiong008是对的~
连DP,因为E是AD的中点所以DE=2,△CDE面积=4,因为P是EC的中点所以△CDP面积=△CDE面积/2=2又△BCP面积=(1/2)×4×2=4,△BCD面积=正方形面积/2=8所以△BDP面
(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(
其实不需要提问,网页上搜就有http://zhidao.baidu.com/question/96211040.html虽说不是自己做的,但还是望采纳啊.