如图,已知o是三角形abc内任意一点,连接ao,bo,co,并延长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:50:29
如图,已知在三角形ABC中,AB=AC,O是三角形ABC内一点.且AO垂直BC,求证:OB=OC.

过AO作直线AH,交BC于H因为,AO垂直于BC所以,AH垂直于BC因为,AB=AC,所以,三角形ABC为等腰三角形所以,AH为中垂线即,OH为中垂线所以有,三角形BOC为等腰三角形所以:OB=OC.

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

已知:三角形ABC,O是三角形ABC内任意一点.求证:AB+AC大于OB+OC

证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,

如图,已知P是三角形ABC内任一点,求证:AB+AC大于BP+PC

延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

1)已知:如图1,三角形ABC是圆O的内接正三角形,点P为弧BC上一动点,求证PA=PB+PC

以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

如图,三角形ABC是等边三角形,O是三角形ABC内一点,OA=5,OB=4,OC=3,求角BOC的度数

以B为原点将三角形BOC逆时针旋转60度,O新位置P,C新位置与A重合则:AP=OC=3,PB=4,∠BOC=∠APB且BPO为等边三角形∠BPO=60AP^2+BP^2=3^2+4^2=5^2=AO

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

已知:如图,O为三角形ABC内任意一点.求证:角BOC=角1+角2+角A

连接AO延长至BC于D,则可看到角BOD为三角形AOB的外角,角COD为三角形AOC的外角,所以角BOD等于角1加上角BAO,角COD等于角2加上角OAC,角BOD加上角COD既是角BOC,即可得所证

​如图,已知△ABC是⊙O的内接三角形,AB=AC,D是圆上任意

射线是角平分线再问:图1,为什么是连接DA再答:因为弧AB和弧AC相等,所以所应角相等

已知:如图,△ABC是○O的内接三角形,角ACB的平分线交圆O于点D,过点D作圆O的切线L.求证AB平行于l.

证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

已知:如图,O为三角形ABC内任意一点,求证:角BOC=角1+角2+角A.

延长CO,交AB于D.角BOC=角1+角BDO(外角等于不相邻两内角和)角BDO=角A+角2(同上)所以,角BOC=角1+角2+角A.证毕!

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,三角形是圆O的内接三角形,AD是圆O的直径,AD=8,且角ABC=角CAD.

我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π

如图,三角形ABC是圆O的内接三角形,角A是30°,BC是2cm,求圆O的半径

连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2

已知O是三角形ABC内一点,求证.

(1)∵O是△ABC内一点,由∠BOC+∠OBC+∠OVB=180°,①又∠A+∠B+∠C=180°,②①-②得∠BOC=∠A+∠ABO+∠ACO,∴∠BOC>∠A.(2)过O作OM‖AC交AB于M,

已知,如图:过三角形ABC内任一点O分别作DE‖BC,FG‖CA,HI‖AB,设三角形ODG、三角形OFI、三角形OHE

1.因为DE//BCFG//CAHI//AB,所以△ODG相似△OFI相似△OHE相似△ABC,所以S1:S2:S3:S=OD^2:IF^2:OE^2:BC^2=BI^2:IF^2:CF^2:BC^2