如图,已知⊙O的直径AB=40cm,点C,D是直径AB所对半圆的三等分点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:14:04
连接BD,∵AB为⊙O的直径,直线MN切⊙O于D,∠MDA=45°,∴∠ABD=45°,∠ADB=90°,∴∠DCB=∠ABD+∠ADB=45°+90°=135°.故答案为:135°.
证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O
第一个问题:∵BF切⊙O于B,而AB是⊙O的直径,∴AB⊥BF,又CD∥BF,∴AB⊥CD,∴CE=DE.第二个问题:∵A、C、B、D共圆,∴∠BCD=∠BAD,而cos∠BCD=3/4,∴cos∠B
证明:∵AB是⊙O的直径,∴∠B+∠BAC=90°,∵OP∥BC,∴∠B=∠AOP,∴∠POA+∠BAC=90°,∴∠POA+∠P=90°,∴∠OAP=180°-90°=90°,∴OA⊥AP∴PA为⊙
①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
因为AB=20cm,所以r=10cm,又弦CD⊥AB于E,CD=16cm,所以CE=CD/2=8设OE=x,则AE=10-x,BE=10+X,所以在直角三角形ABC中,CE^2=AE*BE,即:8^2
1.(图一)⑴∵AB是直径∴∠ACB是直角(半圆上的圆周角是直角)利用勾股定理可求出:BC=8⑵∵CD平分∠ACB∴∠ACD=∠BCD=90°÷2=45°而∠BAD=∠BCD=45°(在同圆中,同经弧
1、相切,2、6-兀,(要详解再说)再问:谢谢您为我解答。过程我会了。再答:感谢采纳,我的知道刚升至三级,呵呵。
∵PC切○O于C点∴OC⊥PC又角P=30°∴OP=2OC=8cm∴PC=√OP²-OC²=√64-16=4√3cm
证明:连接AC、OD.∵AD∥OC(已知),∴∠DAB=∠COB(两直线平行,同位角相等);又∵∠CAB=12∠COB(同弧所对的圆周角是所对的圆心角的一半),∴12∠DAB=∠CAB(等量代换),∵
证明:如图,连接OC;∵BC∥OP,∴∠B=∠POA,∠BCO=∠COP,∵OB=OC,∴∠B=∠OCB,∴∠COP=∠AOP;∵OC=OA,OP=OP,∴△PCO≌△PAO,∴∠OCP=∠OAP=9
(1)证明:连接OD.∵D为AC中点,O为AB中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴∠DEC=90°,∴∠ODE=∠DEC=90°,∴OD⊥DE于点D,∴DE为⊙O的切线;(2
延长DE交圆于点F,根据垂径定理得DF=2AD,又已知BC=2AD,所以,DF=BC,BC=DF,所以BC=2DE.
图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&
没错啊,你认为标准答案哪一步不对?具体说说.再问:∵CF⊥AB,CE⊥AD,且CE=CF∴∠CAE=∠CAB∵OC=OA究竟是怎么得出来的啊==再答:估计你就是这里不懂。是这样,三角形ACE和三角形A
(1)证明:∵CE是⊙O的直径,∴∠CAE=90°,∴∠BAC+∠BAE=90°,∵CD⊥AB,∴∠BAC+∠ACD=90°,∴∠BAE=∠ACD,∵∠BAE=∠BCE,∴∠ACD=∠BCE;(2)∵
因为OD‖BC,AB为⊙O的直径,O为AB中点,所以OD为三角形ABC中位线,BC=10cm,所以OD=5cm