如图,已知抛物线y=4分之一x的平方 1,且直线y=kx b经过点B(0,2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:13:20
(1)解y=−x2+4xy=13x2 得x=3y=3 或x=0y=0,∴A点的坐标为(3,3);(2)如图所示:作AE∥y轴,直线x=t与抛物线y=-x2+4x的交点B(t,-t2
由A(-4,0,)B(1,0)可得y=(1/2)x^2+1.5x-2,当x=0时,y=-2,则C:(0,-2)①当AE=AC时,AE=AC=根号下((-4)^2+(-2)^2)=2根号5,因为A:(-
(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-
(1)x=0时,y=3y=-4x²+13/2·x+3=0得到x=2、-8/3∴A(0,3)B(2,0)(2)y=-4x²+13/2·x+3=3得到x1=0x2=13/8∴AP=x2
(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/
令y=0,的x=4或-2(舍去),故A(4,0)同理令x=0得y=4,故B(0,4).则直线ABx+y-4=0.(2)由题可得,要使直线AB与该正方形相加,只需直线AB与线段PQ有交点,(lz学过线性
A(4,0)B(0,4)AB的解析式y=-x+4(2)2《=x《=4
令y=0,得x=4,-2,点A在x正半轴,所以A(4,0)令x=0,得y=4,所以B(0,4)直线xy:y=-x+4点P(x,x),点Q(x/2,x/2)(1)考虑两种极端,点P恰好在直线AB上,和点
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
再问:第三问的P点是怎么求出来的啊,那个算的过程我不太懂,不好意思·····再答:刚看见当时写错了可以这么说,AB的长已经确定了,我们把AB当做底,只要求出在AB上的高,就可以求出面积了,现在要求面积
写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X
(1)设L2的解析式为y=ax2+bx+c由题意,得c=2,-b/2a=1,a=-1所以b=2所以y=x2+x+2y=-x2+x+2=-(x-1/2)2+9/4所以抛物线的对称轴为x=1/2设L3的顶
(1)y=x²-4x+3=(x-2)2-1.抛物线顶点坐标:(2,1)(2)抛物线与X轴相交A、B两点;另y=0,即x²-4x+3=0,解方程的x=1或3;由此可知A、B坐标为(1
关于y轴对称时偶函数∴令y=y,x=-x∴y=2/3x2-16/3x+8
A(4,0)B(-2,0)C(0,4)先求得BC方程:y=2x+4则作BC中垂线EG交BC于E,得点E为(-1,2),EG⊥BC,所以斜率相乘得-1,则EG斜率为-1/2将E点代入得EG方程,y=-1
图呢,题呢?再问:唉。。。我准备问度娘了再答:建议你用http://www.jyeoo.com/可信,标准再问:谢谢啊
(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/
抛物线于y轴交点为B(0,c),A(1,0),所以直线AB是y=-cx+c,与抛物线y=ax^2+bx+c联立,得到ax^2+(b+c)x=0,其判别式△=0,得到b=-c,又由于抛物线顶点为(1,m
(1)令y=0,得-x2+x+4=0,即x2-2x-8=0;解得x=-2,x=4;所以A(4,0);令x=0,得y=4,所以B(0,4);设直线AB的解析式为y=kx+b,则有:4k+b=0,b=4解