如图,已知点O为三角形ABC内任意一点,证明:AB AC BC〉OA OB OC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:42:27
已知点O为三角形ABC内一点,且OA+OB+OC=0,求证O为三角形重心.

证明:作图,过B作BE平行OC且BE等于OC,OE连接交BC于FOB+OC=OB+BE=OE因BE平行且等于OC所BOCE为平行四边行所F为OE中点OF=1/2OE因OA+OB+OC=0所OB+OC=

已知O为三角形ABC所在平面内一点,若OA+OB+OC=O,则点O事三角形ABC的什么心

取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向

1)已知:如图1,三角形ABC是圆O的内接正三角形,点P为弧BC上一动点,求证PA=PB+PC

以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 

跟相似性有关:如图,已知O为三角形ABC内一点,过点O作EF平行于BC,GH平行于AB,PQ平行于AC,

其实这个好做,利用相似把分母化为一样的:第一题和第二题是一样的做我只做第一题,第二题留给你练手;因为:(相似我就不证明了,我直接说)GF/AC=0F/BC=BH/BCPE/AB=0E/BC=QC/BC

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

已知,如图.三角形ABc内接于圆o,AB为直径.角CBA的平分线交Ac于点F.,交圆o于点D,DE⊥AB(1):求证,P

(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点

(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D

如图,已知点O为三角形ABC内任意一点,连结OA,OB,OC,在OC上任意取一点E,作EF//AC,交OA于点F,做DE

∵EF∥AC,∴△AOC∽△FOE∴OF/OA=OE/OC同理可得△ODE∽△OBC∴OE/OD=OD/OB∴OF/OA=OD/OB又∵∠BOA=∠BOA∴△OFD∽△OAB

已知:如图,O为三角形ABC内任意一点.求证:角BOC=角1+角2+角A

连接AO延长至BC于D,则可看到角BOD为三角形AOB的外角,角COD为三角形AOC的外角,所以角BOD等于角1加上角BAO,角COD等于角2加上角OAC,角BOD加上角COD既是角BOC,即可得所证

如图,已知三角形ABC内接于圆O,AD为圆O的弦,∠1=∠2,DE⊥AB于点E,DF⊥AC于点F.求证:BE=CF.

ED=DF(角平分线定理)因为,∠1=∠2,所以弧BD=弧DC(等圆周角对等弧),所以BD=BC(等弧对等边)所以三角形EBD、DCF全等,所以BE=CF

如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中弧AB上一点,延长DA至点E

∵CD=CE,∴∠CDA=∠CEA∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB∵ADBC四点共圆,∴∠CAE=∠CBD∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BC

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

已知:如图,O为三角形ABC内任意一点,求证:角BOC=角1+角2+角A.

延长CO,交AB于D.角BOC=角1+角BDO(外角等于不相邻两内角和)角BDO=角A+角2(同上)所以,角BOC=角1+角2+角A.证毕!

如图,三角形abc为圆o的内接三角形,i为三角形abc的内心,ai的延长线交bc于点e,交圆o于点d.①求证:db=d

此题我做过.初三上册的图大概这样.A.IB.E.C.D是证明DB=CD吧?证明:∵AD平分∠BAC∴∠BAD=∠CAD∵∠BDC=∠CAD∠BAD=∠BCD(同圆种弧所对圆周角相等)∴∠BDC=∠BC

如图,已知点O为△ABC内一点,连接BO,CO,试证BOC>角A

延长BO交AC于点D,则有:∠BOC=∠BDC+∠OCD,∠BDC=∠A+∠ABD,所以,∠BOC>∠BDC>∠A.

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直于bc与f,连接de、

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直bc 连接de df

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

已知,如图:过三角形ABC内任一点O分别作DE‖BC,FG‖CA,HI‖AB,设三角形ODG、三角形OFI、三角形OHE

1.因为DE//BCFG//CAHI//AB,所以△ODG相似△OFI相似△OHE相似△ABC,所以S1:S2:S3:S=OD^2:IF^2:OE^2:BC^2=BI^2:IF^2:CF^2:BC^2