如图,已知矩形纸片ABCd的长为8,宽为6,把纸片对折

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:38:20
如图,矩形纸片ABCD的边长AB=8,AD=4.将矩形纸片沿EF折叠,使点A与点C重合.试求,BE的长,△CEF的周长

设BE=x,EC=8-x,由Rt△EBC有(8-x)^2=x^2+4^2;得x=3;容易看出CE=CF;((1/2)EF)^2=AE^2-((1/2)AC)^2,可解得EF=2倍根号下5;所以周长为1

如图,把矩形纸片ABCD折叠,使点B落在点D处,点C落在C'处,已知AB=16,AD=12,求折痕EF的长

过A做AG⊥BD交BD于G,过O做OH⊥AB交AB于H则AG为三角形ABD的高,OH为三角形OBF的高∵把矩形纸片ABCD折叠,使点B落在点D处∴EF垂直平分BD由面积公式得AB·AD=AG·BD得A

如图,矩形纸片ABCD的长为2,宽为1,将纸片ABCD折叠,使点D落在BC的中点E处,点A落在F处折痕为EF,则线段CN

CN²+CE²=(CD-CN)²CN=15/16MN²=BC²+(1/4)²MN=√17/4CN/MN=15√17/681/4的推导过M点做

身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形纸片ABCD(矩形纸片要足够

(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E点,∠AEB=45°,(2)中,可得∠FEC=180−452=67.5(度)∵AF∥EC,∴∠AFE=∠FEC=67.5°.故选

(2013•太仓市二模)如图,矩形纸片ABCD的宽AB=3

作FG⊥AD于点G,则在直角△EFG中,FG=AB=3,∠GEF=12(180°-∠AEH)=12(180°-60°)=60°,∴sin∠GEF=FGEF=3EF=sin60°=32,解得:EF=2.

如图,矩形纸片ABCD中,已知AB=5,AD=4,四边形MNEF是在矩形纸片ABCD中剪裁出的一个正方形MNEF.

(1)如图,过点E作PQ垂直于AB,分别交AB、CD于点P、Q,∵∠QFE+∠QEF=∠NEP+∠QEF=90°∴QFE=∠NEP在△EPN和△EQF中,∠FQE=∠EPN∠QFE=∠PENEF=NE

已知:如图,把矩形纸片ABCD折叠,使点C落在直线AB上,

(1)证明:如图1,∵矩形纸片ABCD折叠,使点C和点A重合,∴点O为矩形的对称中心,EF⊥AC,∴OE=OF,∴AC与EF互相垂直平分,∴四边形AECF为菱形;(2)作EH⊥AD于H,如图2,∴四边

如图1,矩形纸片ABCD的边长分别为a,b(a

(1)PN‖MN因为四边形ABCD是矩形,所以AD‖BC,且M在AD直线上,则有AM‖BC∴∠AMP=∠MPC,由翻折可得:∠MPQ=∠CPQ=∠MPC,∠NMP=∠AMN=∠AMP∴∠MPQ=∠NM

如图,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为_____

根据条件可知:矩形AEFB∽矩形ABCD.∴AEAB=ABAD.设AD=x,AB=y,则AE=12x.则12xy=yx,即:12x2=y2.∴x2y2=2.∴x:y=2:1.即原矩形长与宽的比为2:1

如图,在直角坐标系中放入一个边长OC为6的矩形纸片ABCD 已知OC:CB=3:5,将纸片翻转后.

(1)B1(8,0)(2)E(10,8/3)所以y=-1/3x+6(3)利用圆的知识就好做了再问:1、2问我会做的,你会做第三小题吗?再答:【1】取B1C中点F过F作B1C的垂线,B1F为半径作圆,交

如图,折叠矩形纸片ABCD,使AD边与对角线BD重合,得折痕DG,若AB=2,BC=1,求AG的长.

设A折叠后落在BD上的A'点,AG=X,A'G=AG=X,BG=AB-AG=2-X,BD²=AB²+AD²=AB²+BC²=2²+1

如果一个矩形的宽与长的比是黄金比,那么这个矩形称为黄金矩形,如图,已知四边形ABCD为黄金矩形,

设AB=a,BC=b,则b/a=(√5-1)/2依题意,BE=AB-AE=a-b,所以BE/BC=(a-b)/b=a/b-1=2/(√5-1)-1=2(√5+1)/(√5+1)(√5-1)-1=(√5

已知;如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E上,BG=10

(1)S=25(2)GF=4√5再问:可以写过程吗?再答:(1)因为折叠,所以三角形BGF≅△EGFBG=EG=10作EH垂直BC于H,则EH=AB=8.HG=根号(EG^2-EH^2)=

两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.

证明:∵两个完全相同的矩形纸片ABCD、BFDE,根据矩形的对边平行,∴BC∥AD,BE∥DF,∴四边形BNDM是平行四边形,∵∠ABM+∠MBN=90°,∠MBN+∠FBN=90°,∴∠ABM=∠F

两个完全相同的矩形纸片ABCD、BFDE如图放置 选取一对全等三角形进行证明

证明:∵四边形ABCD、BFDE是矩形∴BM‖DN,DM‖BN∴四边形BNDM是平行四边形又∵AB=BF=ED,∠A=∠E=90?舷哅B=∠EMD∴△ABM≌△EDM∴BM=DM∴平行四边形BNDM是

如图,已知矩形纸片ABCD的长为8,宽为6,把纸片对折,使点A与点C重合,求折痕EF的长.

连接AE、CF,由折叠可知,EF⊥AC,又∵AF∥CE,∴∠FAO=∠ECO,在△AOF与△COE中,∠FAO=∠ECO∠AOF=∠COE=90°FO=EO,∴△AOF≌△COE(AAS),∴AF=C