如图,已知等边△ABC内接于圆O,BD为内接正十二边形的一边
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 02:30:58
①∵将△PBC绕C点顺时针旋转60°,∴∠PCD=60°,PC=CD,AD=PB,∠CAD=∠CBP,∵∠PBC+∠PAC=180°,∠DAC+∠PAC=180°,∴P,A,D在一条直线上,∴△PCD
(1)证明:作PH⊥CM于H,∵△ABC是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM∥BP,∴∠BPC=∠PCM=60°,∴△PCM为等边三角形;(2)∵△ABC是等
BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB
关于如图,三角形ABC内接于圆O
这个题用相似(1)角ACB=60度,角APC=角ABC=60度,角PAC=角CAE所以三角形PAC相似与三角形CAE所以PA:AC=AC:AE,即AC^2=PA*AE,AC=AB(2)角BPE=角BC
解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A
证明∵等边△ABC中AB=BC∠ABC=∠BCE=60°又有BD=CE∴△ABD≌△BCE
1因为∠ABC=∠ADC(同弧所对应的圆周角相等)∠CED=∠AEB(对顶角)所以△ABE与△CDE相似,根据对应边成比例得出:CD/AB=DE/BE,即CD/DE=AB/BE——式1已知DC^2=D
AM=PD+PE+PF证明:S△ABC=BC*AM/2等边三角形中三边相等S△ABC=PD*BC/2+PE*AC/2+PF*AB/2=(PD+PE+PF)*BC/2∴BC*AM/2=(PD+PE+PF
(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=
令x=0,则y=1;令y=0,则x=3,故A(3,0),B(0,1),AB=(3)2+12 =2,过C作CD⊥AB于D,∵△ABC是等边三角形,∴BD=12AB=12×2=1,∴CD=BD•
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
设AM/BC=n∵3AM=AM+BC+2BM∴2AM=AM/n+2AM*(1/n-1)2=1/n+2/n-24=3/n∴4:3这是希望杯的题目吧!
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
解∵∠BOC=120°∴∠BAC=60°(同弧所对的圆周角等于圆心角的一半)∵AB=AC∴△ABC为等边三角形∵BD是直径∴∠BAD=90°附:对于正△ABC,圆心O既是内心,又是外心∴BD平分∠AB
是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形
(1)如图①,△PDC为等边三角形.理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵AP过圆心O,AB=AC,∠BAC=60°
由等边、中线据三线合一得AD平分角BAC,因为等边,角BAC为60度,所以角DAC为30度,因为等边,角ADE为60度,180度减它们得角AFD为90度,所以AC⊥DE,所以AE是△ADE的高,因为全
△ABC是等边直角,AB为直径,取中点(圆心o)连接OF,AB=2R因为△AEF是正三角形,所以∠EAF=∠AFB=60°连接BE,AB是直径,所以∠AEB=90°所以∠FEB=30°由相似得∠EAB
因为△ABC是等边△所以∠ABC等于60°因为DA=DB所以DA平分∠ABC∠DAB=∠DBA所以∠DAB=∠DBA=30°所以∠ABD=120°所以∠BPD=60°卜晓得对不对、给点分吧.好歹偶想了