如图,已知等边三角形abc内接于圆心o,bd为内接正十二边形的一边
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:42:59
将△PBC旋转60°,使BC与AC重合,旋转后的图形为△ACD,连接DP,则∠PDC=60°,∠PDA=90°且PD=2,DA=1,所以AP=√5
分析:作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
证明:连接PA,PB,PC则S△ABC=S△PAB+S△PBC+S△PAC∵S△PAB=1/2AB*PES△PBC=1/2BC*PDS△PAC=1/2AC*PFS△ABC=1/2BC*AH∴1/2AB
解题思路:(1)根据已知利用SAS判定△APC≌△BDC,从而得到PC=DC,因为AP过圆心O,AB=AC,∠BAC=60°,所以∠BAP=∠PAC=12∠BAC=30°,又知∠CPD=∠PBC+∠B
以BP为边作等边三角形BPD,连接AD,则BD=BP=DP=3,∠DBP=∠BDP=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵∠ABD+∠ABP=∠CBP+∠ABP=60°,∴
做垂线FI交DE于I设AG长为x,ADE和ABC相似,则DE为2x.因为等边,FI=√3*x,GH=2-x.则√3*x=2-x
旋转之后有两个隐藏已知:△ABO与△CBO1全等,∠OBO1=60°所以△BOO1为等边三角形,∠BO1O=∠BOO1=60°∠CO1O=∠BO1C-∠BO1O=∠AOB-∠BO1O=55°∠COO1
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°(勾股定理逆
给你一个严谨的求解过程.设ΔABC的内切圆O切BC边于M点,连结OM、BM、CM.因为三角形内切圆的圆心为其三条角平分线的交点,所以角OBM=角OCM=30度.因为圆的切线与过切点的半径垂直,所以角O
连接DC,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC=AB,∵BF=AB,∴BF=BC,∵在△ADC和△BDC中AD=BDAC=BCDC=DC∴△ADC≌△BDC,∴∠ACD=∠BCD=1
连接DC∵△ABC是等边三角形∴∠ACB=60°AB=AC=BC∴AB=BP∴BP=BC在△BDP和△BDC中BP=BCBD=BD∠DBP=∠DBC∴△BDP≌△BDC∴DP=DC∠DCB=∠BPD=
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
分析 由已知可知∠1=30° ∠2=90° 而CD=5√2 ∴2x平方=50 ∴x=5 就是圆o的半径等于5 这样就能
证明;∵⊿ABC是等边三角形∴AB=AC=BC,∠ABC=60º在PB的延长线上截取BD=PC,连接AD∵ABPC四点共圆∴∠ABD=∠ACP又∵BD=PC,AB=AC∴⊿ABD≌⊿ACP(
解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S
连接AP,BP,CPS△ABC=S△APB+S△BPC+S△APC即;1/2*BC*AD=1/2*AB*FP+1/2*BC*PG+1/2*AC*PE等边三角形ABC中AB=BC=AC消去相等的项可得P
三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3