如图,抛物线y=1 4x平方 bx c于x轴交于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:03:15
如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线

按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-

如图,抛物线y=ax平方+bx+c与x轴相交于两点A(1,0),B(3,0)与y轴相交于点C(0,3).(1)求抛物线的

1)由已知得,a+b+c=09a+3b+c=0c=3解之得a=1b=-4c=3∴y=x2-4x+3;(2)∵D(7/2,M)是抛物线y=x²-4x+3上的点,∴M=5/4∴S△ABD=5/4

如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

如图,已知抛物线y=ax平方+bx+3(a不等于0)与x轴交于点A(1,0)B(-3,0)与y轴交于点C 求此抛物线的解

我做了.不知道对否啊.凑合点吧.y=ax平方+bx+3与x轴交于点A(1,0)B(-3,0)将x=1和x-3分别带入得关于a,b二元一次次程a+b+3=09a3b+3=0解得:a=-1,b=-2带入原

如图,顶点为D的抛物线y=x平方+bx-3与x轴交于A 、B两点,与y轴交于点C,连结BC.已知tan∠ABC=1

1)由tan∠ABC=1C(0,-3);BC方程:y=x-3;y=0则x=3故B(3,0)代入抛物线方程得b=-2;2)取C关于x轴的对称点F,则F(3,0);PF=CP;故△CDP的周长=FP+PD

如图,一元二次方程x的平方+2x-3=0的二根x1、x2(x1小于x2)是抛物线y=ax平方+bx+c与x轴的两个交点B

(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,

如图,已知抛物线y=-4/9x的平方+bx+c与x轴相交于A,B两点,其对称轴为直线x=2,且与x轴相交于点D,AO=1

解1)对称轴为x=2所以9/8*b=2b=16/9又AO=1所以A点坐标为(-1.0),该点在抛物线上代入得-4/9-16/9+c=0c=20/9所以y=-4/9x^2+16/9x+20/9y=-4/

如图,抛物线y=-x的平方+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)球该抛物线的解析式.

(1)抛物线y=-x的平方+bx+c与x轴交于A(1,0),B(-3,0)两点,所以0=-1+b+c,0=-9-3b+c,解得b=-2,c=3,y=-x的平方-2x+3.(2)令抛物线中的x=0,则y

如图,抛物线y=a(x的平方)+bx+c经过点A(4,0),B(2,2),连接0B,AB

数学语言不好打字,这是答案和解析的网址.祝学习愉快咯~

如图已知直线y=-x+3交x轴于点A,交y轴于点B,抛物线y=ax平方+bx+c经过A,B,C[1,0]三点.

(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组   9a+3

数学如图14,点 A(-2,0) 、B(4,0) 、C(3,3) 在抛物线 y= ax平方+bx+c 上,点D 在y 轴

1、由抛物线与X轴的两个交点A、B的坐标,可以由两根式设抛物线解析式为:y=a﹙x+2﹚﹙x-4﹚,然后将C点坐标代人得:a×﹙3+2﹚﹙3-4﹚=3,解得:a=-3/5,∴抛物线解析式是:y=﹙-3

如图14,点 A(-2,0) 、B(4,0) 、C(3,3) 在抛物线 y= ax平方+bx+c 上,点D 在y 轴上,

(1)将点A、B、C坐标值带入抛物线方程:             &

如图,在平面直角坐标系中,直线y=-x+3与x y轴分别交于点B.C;抛物线y=-x平方+bX+c经过B C两点,并与x

(1)y=-x^2+2x+3(3)y=-x^2+2x+3=4-(x-1)^2P(m,4-(m-1)^2)B(3,0),C(0,3)等腰三角形BPC以BC为底边,PB^2=PC^2PB^2=(m-3)^

如图抛物线y=ax的平方+bx+c(a>0)与x轴交于A(1,0),B(5,0)两点,与y轴交于点M,抛物线顶点为P,且

1)过P作PQ⊥x轴,Q为垂足则Q点坐标为(3,0)|BQ|=5-3=2所以,|PQ|=√(PB^2-BQ^2)=√(20-4)=±4a>0,开口向上,所以,P在x轴下方,所以,P点坐标为:(3,-4

如图,抛物线y等于负x的平方加bx加c与x轴交于a,b两点 求该抛物线的解析式?

1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当

抛物线抛物线y=ax的平方+bx+c.

将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为