如图,抛物线y=ax² bx 5 2与直线AB,过点D作AB平行的直线l

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:46:23
如图抛物线y=ax²+bx+c的对称轴是x=1,下列结论

答:抛物线开口向上,a>0抛物线y=ax^2+bx+c的对称轴x=-b/(2a)=1,b=-2a0,3a+c>0所以:(a+c)^2-b^2=(a+c)^2-4a^2=(a+c-2a)(a+c+2a)

如图,一直点A(-4,8)和点B(2,n)在抛物线y=ax^2上

将A(-4,8)代入y=ax^2:8=16a则a=1/2抛物线解析式为:y=x^2/2则B点座标为:B(2,2)点B关于x轴对称点P的坐标:P(2,-2)Q点的确定:连接AP,直线AP与X轴的交点即是

已知,如图1,抛物线y=ax²-2ax+c(a≠0)与y轴交于点C(0,-4)

(1)将A、C坐标代入抛物线y=ax²-2ax+c得:0=9a-6a+c4=c解得:a=4/3,c=4所以抛物线解析式为y=4x²/3-8x/3+4(2)

如图1,抛物线y=ax^2-3ax+b经过A(-1,0),C(3,-2)

(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀

如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(

问题补充:如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围a的取值范围是-0.7

如图1,已知抛物线 y=ax^2 的顶点为P,A、B是抛物线上两点,AB‖x轴,△PAB是等边三角形.

(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时

如图抛物线,y=ax^2+bx+2交x轴于A(-1,0),B(4,0)两点.

抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式

1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

如图,抛物线y=ax²向右平移1个单位,向下平移4个单位,得y=(x-h)²+k,所得抛物线

抛物线y=ax²向右平移1个单位,向下平移4个单位,得y=(x-h)²+k则h=1,k=-4所以新抛物线:y=(x-1)²-4,顶点D(1,-4)其与x轴的交点为:0=(

如图,抛物线y=ax²+bx+c 的顶点为P(-2,2)

先将y=ax²+bx+c改为y=a(x+k)²+c将顶点(-2,2)带入方程,得y=a(x+2)²+2在将点A带入方程3=a(0+2)²+2解a=4/1从题意得

如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线相交

1.将A,B,C三点,分别代入抛物线方程,得:0=a-b+c0=9a+3b+c3=c所以得出:a=-1,b=2,c=3∴抛物线解析式为y=-x²+2x+32.存在,Q有3个坐标设Q到直线MB

如图,抛物线y=x^2-2mx+(m+1)^2(m>0)的顶点为A,另一条抛物线y=ax^2+n(a

设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

抛物线y=ax^2+bx+c的图像如图,则下列结论 .其中正确的结论是

首先(1,2)是这个抛物线上的点,所以代入y=ax^2+bx+c得:a+b+c=2所以④a+b+c=2正确.其次对称轴是-1/2,那么-b/2a=-1/2,所以a=b,抛物线开口向上,所以a>0,又a

如图,抛物线y=ax²+c(a

(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4