如图,抛物线y=ax² bx c过点A(-1,0),且经过直线y=x-3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:56:21
如图《在平面直角坐标系中,抛物线y=ax²+3与y轴交于点A,过点A与x轴平行的直线交抛物线

∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,1/3x2=3解得x=±3,∴B点坐标为(-3,3),C点坐标为(3,3),∴BC=3-(-3)=6.故答案为6.

如图,抛物线y=ax²+bx+c过原点O,交x轴于另一点N,直线y=kx+b与两坐标轴分别交于A、D两点.

1.抛物线过原点得知c=0,则抛物线方式为:y=ax²+bx.y=ax²+bx与y=kx+b相交于B,C两点,分别代入得到方程解析式为:y=-x²+5x和y=-x+4.2

二次函数问题如图,抛物线y=ax²-5ax+4a与x轴交于点A、B,且过点(5,4)(1)求a的值和该抛物线顶

解1):把x=4,y=5代入y=ax²-5ax+4a得:4=25a-25a+4a4a=4a=1所以抛物线的解析式是y=x²-5x+4,化成顶点式:y=x²-5x+4y=x

如图1,抛物线y=ax^2-3ax+b经过A(-1,0),C(3,-2)

(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀

如图,已知抛物线 y=ax +bx+c 经过 A(0,4),B(4,0),C(–1,0)三点.过点 A 作垂直于 y 轴

(1)由题意得c=4,16a+4b+c=0a-b+c=0∴a=-1, b=3, c=4∴Y=-X²+3X+4 (2)设存在点P,若点P横坐标为X,则纵坐标为-X

如图,在平面直角坐标系中,已知抛物线y=ax²+bx过点A(2,4),B(6,0)两点,顶点为点C.

抛物线y=ax^2+bx过点A(2,4),b(6,0),∴4=4a+2b,0=36a+6b,解得a=-1/2,b=3.∴y=(-1/2)x^2+3x=(-1/2)(x-3)^2+9/2,顶点C(3,9

如图,过A(1,0),B(3,0)作x轴的垂线,分别交直线y=4-x于C,D两点.抛物线y=ax平方+bx+c经过O,C

是二次函数压轴题,综合考查了二次函数的图象与性质,待定系数法,函数图象上点的坐标特征,平行四边形,平移变换,图形面积计算等知识点,有一定的难度.确实还是需要动点脑子的第一问中利用待定系数法求出抛物线解

如图,抛物线y=ax²+bx+c的对称轴是过(1,0)且与y轴平行的的直线,图像经过点P(3,0) 【图开口向

抛物线y=ax²+bx+c的对称轴是x=1∵图像经过点P(3,0)∴函数解析式为y=a(x+1)(x-3),(a>0)方程ax²+bx+c=0的根为-1和3不等式ax²+

如图,抛物线y=ax^2;+bx+c与x轴相交于b(2,0)、c(8,0)两点,与y轴的正半轴相交于点A,过A、B、C三

我看不到你的图.不过个人认为过A,B,C三点的OP与y相切与点A.BC是X轴上的直线,而A是y轴上的点,P点是不能同时过ABC三点的.除非这三点在同一直线上.可是根据你的描述,显然,他们不是同一直线上

如图,抛物线y=ax²+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C.

(1)y=x-3与坐标轴的两个交点为(3,0),(0,-3)设y=a(x+1)(x-3)把点(0,-3)代入得-3=a(-3),a=1y=(x+1)(x-3)所以y=x²-2x-3(2)y=

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图,已知抛物线y=ax²+bx+c俞x轴交于A(1,0),B(3,0)两点,且过点(-1,26),抛物线的顶

1解析式为y=a(x-1)(x-3),代入(-1,16)点得16=8a所以a=2,y=2(x-1)(x-3)=2x^2-8x+62易得c点坐标为(2,-2),已知AON构成的三角形和CAD构成的三角形

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

如图,抛物线y=ax²+bx+c 的顶点为P(-2,2)

先将y=ax²+bx+c改为y=a(x+k)²+c将顶点(-2,2)带入方程,得y=a(x+2)²+2在将点A带入方程3=a(0+2)²+2解a=4/1从题意得

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

如图,抛物线y=ax²+c(a

(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4

如图,抛物线y=ax^2+bx+c过D(-1,0)E(0,3)与x轴的另一点为A,函数最大值为4,求该抛物线的解析式

由题意得方程组a-b+c=0c=3(4ac-b²)/4a=4解得a=-1或a=-9b=2b=-6c=3c=3∴解析式为y=-x²+2x+3或y=-9x²-6x+3