如图,抛物线y=x平方与直线Y=2x在第一象限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:58:22
如图,抛物线y=x的平方与直线y=2x在第一象限内有一个交点A.

令x^2=2x  解得x=2 或x=0.由于第一象限,所以x不等于0.x=2时,y=4  所以A点坐标为(2,4)OA长度为2√5,若AOP为等腰三角

如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线

按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-

如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

初三数学题如图,已知抛物线y=2分之1x平方+mx+n(n不等于0)与直线y=x交于A.B两点,与y轴交与点C,OA=O

BC‖x轴.x=0,OC=-n-n=-根号下(-2n),解得n=-2抛物线的解析式为:y=1/2x2+x-2(2)DE=根号2,点D的横坐标为x,(点E在点D的上方),因此D(x,x)E(x+1,x+

如图,抛物线y=-x的平方-2x+2,与y轴交与C点,点D为抛物线顶点,CE⊥OD交抛物线于E,求直线CE的解析式.

由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3

求抛物线Y=X平方-3x+3与直线y=2x-1的交点

把直线y=2x-1代入抛物线方程得2x-1=x^2-3x+3x^2-5x+4=0(x-4)(x-1)=0x=4x=1y=2*4-1=7y=2*1-1=1所以交点是(4,7)与(1,1)

求抛物线y=x的平方-x-6与直线y=3x-2的交点坐标

3x-2=x^2-x-6x^2-4x-4=0x=2+根号2,y=4+3根号2x=2-根号2,y=4-3根号2

直线y=x与抛物线y=-2x的平方的交点是

根据题意有x=-2x^2解这个方程有x1=0,x2=-1/2所以对应的y1=0,y2=-1/2直线y=x与抛物线y=-2x的平方的交点是(0,0)(-1/2,-1/2)

如图已知抛物线Y=2/1x的平方与直线y=a(a>0)相交于A,B两点,且三角形AOB为直角三角形

同学,y=2/1x是抛物线么?题目写错啦,y=2/1x在一三象限,而y=a(a>0)在一二象限,只有一个交点啊

如图,已知抛物线y=1/2x平方+mx+n(n≠0)与直线y=x交与A,B两点,与y轴交于点C,OA=OB,BC∥x轴.

设A=(k,k)则OA=OB有B=(-k,-k),BC//x轴有C=(0,-k)(1)k=1/2k^2+mk+n(2)-k=1/2(-k)^2-mk+n(3)-k=n(1)-(2)2k=2mk,m=1

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

如图,直线y=-3x-3与x轴交于A,与y轴交于B,过A、B两点的抛物线为y=x的平方+bc+c (急,

1.将x=0带入直线ab的方程.y=-3即(0,-3)为A点坐标.将y=0带入.x=-1即(-1,0)为B点坐标.2.将AB坐标带入抛物线解析式.y=x^2+bx+c解得b=-2c=-3解析式为y=x

如图,对称轴为直线x=3的抛物线y=ax平方+2x与x轴交于点B、O

1.∵y=ax²+2x的对称轴是直线x=3,∴-2/2a=3a=-1/3∴y=-1/3x²+2x当x=3时y=-1/3*3²+2*3=3∴A(3,3)2.令对称轴与x轴交

如图,已知直线y=-1/2x+2与抛物线y=a(x+2)平方;相交于A,B两点,点A在Y轴上M为抛物

已知直线y=-1/2x+2与Y轴的交点(0,2).又因为已知直线y=-1/2x+2与抛物线y=a(x+2)平方相交于A,B两点,点A在Y轴上,所以点A(0,2).将A(0,2)坐标代人抛物线方程y=a

如图,在平面直角坐标系中,直线y=-x+3与x y轴分别交于点B.C;抛物线y=-x平方+bX+c经过B C两点,并与x

(1)y=-x^2+2x+3(3)y=-x^2+2x+3=4-(x-1)^2P(m,4-(m-1)^2)B(3,0),C(0,3)等腰三角形BPC以BC为底边,PB^2=PC^2PB^2=(m-3)^

已知:如图,抛物线y=负四分之三x的平方+3与x轴交于点A,点B,与直线y=负四分之三x+b相交与点B,点C,直线

由题可知:B点的坐标为(2,0),则直线的解析式为:Y=-3/4X+3/2,抛物线的解析式为:Y=-3/4X方+3且C点的坐标为(-1,9/4),BC=15/4AM=t,BN=2t,所以BM=4-t,

(2014•东昌府区模拟)如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为

∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.