如图,抛物线y=x²+bx+c与y轴交于点C,顶点为A,tan∠AOE=二分之三
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:02:23
按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-
由A(-4,0,)B(1,0)可得y=(1/2)x^2+1.5x-2,当x=0时,y=-2,则C:(0,-2)①当AE=AC时,AE=AC=根号下((-4)^2+(-2)^2)=2根号5,因为A:(-
答:抛物线开口向上,a>0抛物线y=ax^2+bx+c的对称轴x=-b/(2a)=1,b=-2a0,3a+c>0所以:(a+c)^2-b^2=(a+c)^2-4a^2=(a+c-2a)(a+c+2a)
第一问,带入数值方程可解第二问,O和A点坐标知道,与EA直线平行的直线过O点,可以写出2个直线的方程,E点到另外个直线的距离可以表示出来,长度使用EA的长度,也不难(这里注意抛物线给出了X.Y的关系)
第一步由BC两点同时过两函数代入解析式易得B坐标为(3,0)C坐标为(0,3)解析式为y=-x*2+2x+3设点PN的坐标分别为(x,-x*2+2x+3)(x,3-x)依据平面几何两点间距离公式可以列
因为在三角形PFG中,两边之差小于第三边,所以lPG-GFl小于等于PF当lPG-GOl取得最大值时,P、F、G不能构成三角形,所以P、F、G共线,即点G在PF的延长线上.
y=x^2-2x
问题补充:如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围a的取值范围是-0.7
1.已知三点A(-1,0),B(3,0),C(0,-3),得到抛物线y=x²-2x-32.只有在∠APC为直角的时候,△APC周长最小,∠APC为直角,可以得到两个点,分别为(1,-1)(1
求采纳! 我也很辛苦
我可以只告诉你具体的思路么?数好难算.算了半天还算错了.UPDATE:知道哪儿错了,重算orz(1)y=负三分之根号三X方+三分之二倍根号三X+根号三(2)1,存在,P(1±二分之根号十,二分之根号三
解①依题意可知方程-x²+bx+c=0的两个根是x1=1x2=-3即方程x²-bx-c=0的两个根为1和-3由韦达定理b=1-3=-2-c=1×(-3)c=3所以抛物线的解析式为y
(1)由题意知,C(0,2√3)D(-b/2a,(4ac-b^2)/4a)将其代入CD表达式中得c=2√3,故D(-b/2a,(8√3a-b^2)/4a)将其代入CD表达式中得,b=2√3(2)设直线
1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当
1)由A(0,2)B(4,2)代入抛物线,得到方程组,解得y=x^2-4x+22)过P点y轴垂线PO'因为AO=2S△APO=1/2*AO*PO’=3/2解得P的横坐标为3/2代入抛物线方程得到P纵坐
1)将A(-1,0)、B(4,0)分别代入y=-x²+bx+c得: &n
将A(-√3,0),B(0,-3)代入y=1/3x²+bx+c:0=1-√3b+c;-3=c,解得c=-3b=-2√3/3方程为:y=1/3x²-2√3/3x-3化成y=1/3(x
y=x-3A(3,0),B(0,-3)y=x^2+bx-c9+3b-c=0.(1)c=3b=-2y=x^2-2x-3y=(x-1)^2-4D(1,-4)
C(0,-3),y(0)=c=-3,y(-1)=1-3+b(-1)=0,b=-2y=x^2-2x-3=(x-1)^2-4,顶点(1,-4)D(m,m^2-2m-3),BC直线:x-y-3=0D到Bc的