如图,抛物线﹣x2+6x交x轴正半轴于点a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:35:07
(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/
:易知:A(-1,0),B(1,0),C(0,-1);则OA=OB=OC=1,∴△ABC是等腰直角三角形,∴∠ACB=90°,AC=2;又∵AP∥BC,∴∠PAC=90°;易知直线BC的解析式为y=x
⑴直线AC:Y=3X+3,⑵直线PQ∥AC,AC=PQ①令Y=3得,-X^2+2X+3=3,X=2或0(舍去),∴Q1(2,3)②令Y=-3得,-X^2+2X+3=-3,X^2-2X+1=6+1,(X
(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)
(1)①对称轴x=-42=-2;②当y=0时,有x2+4x+3=0,解之,得x1=-1,x2=-3,∴点A的坐标为(-3,0).(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3
(1)k=-3,点A的坐标为([-b-√(b²+12)]/2,0),点B坐标为([-b+√(b²+12)]/2,0)(2)设抛物线y=x2+bx+k的顶点为M,求四边形ABMC的面
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=
求采纳! 我也很辛苦
解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:
解①依题意可知方程-x²+bx+c=0的两个根是x1=1x2=-3即方程x²-bx-c=0的两个根为1和-3由韦达定理b=1-3=-2-c=1×(-3)c=3所以抛物线的解析式为y
∵直线x=t分别与直线y=x、抛物线y=x2-6x+9交于点A、B两点,∴A(t,t),B(t,t2-6t+9),AB=|t-(t2-6t+9)|=|t2-7t+9|,①当△ABP是以点A为直角顶点的
(1)①对称轴x=-42=-2;②当y=0时,有x2+4x+3=0,解之,得x1=-1,x2=-3,∴点A的坐标为(-3,0).(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3
1)当K=2时,假设存在点M(a,2a),那么MN=MQ=|2-a|AO//MQ,因此四边形AOMQ是梯形,面积等于(MQ+AO)*M到y轴的距离/2=(3+|a|)*|a|/2正方形MNPQ的面积=
1对称轴为x=-2x²+4x+3=0(x+3)(x+1)=0x=-1x=-3所以点A(-3,0)2点P(-2,3)或点P(2,3)3点D为(-2,1)CM:(y-3)/x=y/(x+2)2y
∵抛物线y=x2+m其对称轴为y轴,∠ACB=90°,∴△ACB是等腰直角三角形,∴AO=BO=CO=|m|,∴A(m,0),故0=m2+m,解得:m1=0(不合题意舍去),m2=-1.故抛物线的解析
(1)y=x2+4x+k=(x+2)2+k-4∴抛物线的顶点C的坐标为(-2,k-4)(4分).(2)过点C作CD⊥x轴于点D,由抛物线的对称性可得CA=CB∵△ABC是直角三角形∴BD=CD=4-k
(1)令x=0,得y=4即点B的坐标为(0,4)令y=0,得(-1/2)x²+x+4=0则x²-2x-8=0∴x=-2或x=4∴点A的坐标为(4,0)直线AB的解析式为(y-0)/
L2:y=-(x+1)(x-3)=-x²+2x+3P(x0,y0)y0=-x0²-2x0+3P关于原点的对称点Q(x,y)x=-x0y=-y0-y=-x²+2x+3y=x
抛物线于y轴交点为B(0,c),A(1,0),所以直线AB是y=-cx+c,与抛物线y=ax^2+bx+c联立,得到ax^2+(b+c)x=0,其判别式△=0,得到b=-c,又由于抛物线顶点为(1,m
1)当抛物线与X轴只有一个公共点,即只有一个交点,即顶点坐标为(X,0).可以根据已知条件,将系数代入顶点坐标公式计算.因为已经知道Y=0,所以直接代入Y的坐标可以得到一条二元一次方程式.4K-(K+