如图,正方形ABCD中,已知∠MAN=45°,求证S△AMN=2S△AEF.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:28:35
如图,已知正方形ABCD中,AP=AD,∠PAD=40°,求∠BPD的度数

∵∴∵四边形ABCD为正方形∴AB=AD,∠BAD=90°∵AP=AD,∠PAD=40°∴∠BAP=∠BAD+∠PAD=130°,AP=AB∵∠PAD+∠ADP+∠APD=180°∴∠APD=70°∵

如图已知,正方形ABCD中,AE=BF,判断四边形ADHG的形状并证明

解∵在正方形ABCD中∠ABE=∠BCF=90°AB=BC,又∵AE=BF∴AE^2-AB^2=BF^2-BC^2,∴BE^2=CF^2∴BE=CF∴△ABE≌△BCF(SSS)∴∠BAG=∠CBH∵

如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

如图,已知正方形ABCD中,角EAF=45°,求证:EF=BE+DF.

证明:在CB的延长线上取点G,使BG=DF,连接AG∵正方形ABCD∴AB=AD,∠D=∠ABG=∠BAD=90∴∠BAE+∠DAF=∠BAD-∠EAF∵∠EAF=45∴∠BAE+∠DAF=45∵BG

如图,已知正方形ABCD中,若AN垂直于BM,请说明AN=BM

文字简单说明一下吧角A为直角假设AN、BM焦点为O则角AOM为直角因此角MAO=角ABM另外由于是正方形,因此AB=AD而AN=AD/COS(角MAO)BM=AB/COS(角ABM)因此能得出AN=B

已知,如图,正方形abcd中,E为BC上一点,AF平分

是AE=BE+DF吧!再问:是,我打错了。求解!再答: 延长EB至G点,使BG=DF,链接AG已知,∠DAF=∠FAE,边AD=AB∴ΔADF≌ΔABG(SAS)∴∠BAG=∠DAF∵∠DA

已知,如图,正方形ABCD的对角线AC与BD

证明:∵ABCD正方形,∴∠DOF=∠COE=90°,OD=OC,∴∠OCE+∠OEC=90°,∵DG⊥CE,∴∠ODF+∠OEC=90°,∴∠OCE=∠ODF,∴ΔOCE≌ΔODF,∴OE=OF.

已知:如图,在正方形ABCD中,对角线AC,BD相交于点O

因为AC,BD为正方形ABCD的对角线则AC⊥BDAO=CO角BAC=45º因为EG⊥AC三角形AEG为等腰直角三角形AG=EG因为EF⊥BD所以EFOG为矩形EF=OG因此EG+EF=OG

如图,已知正方形ABCD和线段a.请你在正方形ABCD中画出裁剪线并将它拼接成两个小正方形

如图,首先熟悉勾股定理的几何证明.再延其思路找出图形裁剪线.

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度如图,已知,在正方形ABCD中,P、Q分

S三角形ADQ+S三角形ABP=S三角形APQ做AE等于AQ,延长CB到点E.因为正方形,所以AB=AD,∠D=∠ABP=90°,因为∠PAQ=45°,所以∠DAQ+∠BAP=45°在Rt△AEB与R

已知:如图,正方形ABCD中,E为BC上一点,AF平分

(没时间画图,请谅解.)延长CD在CD延长线上截取DG=BE在△ABE与△ADG中AB=AD∠B=∠ADB=90°BE=DG∴△ABE≌△ADG(SAS)∴AE=AD,∠BAE=∠DAG∴∠EAG=9

如图,已知点O是正方形ABCD的重心

这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相

已知如图,正方形ABCD中,AP=AB+CP,AF是

作FE垂直AP于E,连接PF.因为角BAF=角PAF,角B=角AEF=90度,AF=AF,所以,三角形ABF全等三角形AEF,所以,AB=AE,BF=EF.因为AP=AB+CP,所以,EP=CP;又P

已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,

OA=OD=AD/sqrt(2),D(0,2sqrt(2))如图,PED-PFA全等,PEOF为正方形,PO平分DOF当A接近O时,PE接近1/2AB,当A接近F时,PE接近PD,所有范围是1/2AD

已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F

将AF顺时针旋转90º到AG位置,如图.连接BG.AB是AD顺时针旋转90º的位置.所以ΔABG是ΔADF顺时针旋转90º得到的三角形.于是,BG=DF,∠5=∠1,∠A

如图,已知正方形ABCD中,若EF垂直于GH,请说明EF=GH

过点G向AD做垂线,交AD于M;过点E向DC做垂线,交DC于N:EF垂直于GH,AD垂直于DC,则角AHG=角DFE;角GMH=角ENF=90°,角MGH=角NEFEN=GM;三角形MHG全等于三角形

如图,在正方形ABCD中.

(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG

如图,已知在正方形ABCD中,∠EDF=45°,求证:EF=AE+CF

延长BC至H,使得CH=AE,连接DH在三角形DCH和三角形DAE中,可以证明这两三角形全等,则:∠HDC=∠ADE----------------------------(1)DE=DH------

已知:如图,正方形ABCD中,CE=CF,求证:BH垂直于DE

证明:∵四边形ABCD是正方形∴BC=CD,∠BCF=∠DCE=90°∵CE=CF∴△BCF≌△DCE∴∠CBF=∠CDE∵∠CDE+∠E=90°∴∠CBF+∠E=90°∴∠BHE=90°∴BH⊥DE