如图,点P是三角形ABC两外角角平分线的交点,求证:角BPC=90度减2分之角A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:38:50
考点:三角形内角和定理;三角形的角平分线、中线和高.分析:(1)根据题目解答过程填写即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,然
过D分别作AE,AC,CF的垂线交E,Q,F.∵AD,CD是、∠EAC和∠FCA的平分线∴ED=DQ,DQ=DF,∴EQ=DF∴三角形BED≌三角形BDF(HL)∴BD平分∠ABC
过点C作CO平分角ACB交BP于O所以角ACO=角OCB=1/2角ACB因为CP平分角ACD所以角ACP=1/2角ACD因为角ACD+角ACB=180度所以角ACO+角ACP=角OCP=90度因为角O
过点P作PF⊥AE于F,PG⊥BC于G,PH⊥AD于H因为BP,CP分别是∠DBC和∠ECB的角平分线所以PF=PG,PH=PG所以PF=PH所以AP平分∠BAC
∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CP平分∠ACE∴∠PCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2∵BP平分∠AB
/>证明:过点P分别作AE、BC、AD的垂线PF、PM、PN,F、M、N为垂足,∵CP是∠BCE的平分线,∴PF=PM.∵BP是∠CBD的平分线,∴PM=PN.∴PF=PN.∴PA平分∠BAC.【此题
证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥A
因为角A=64度所以角ABC+角ACB=180-64=116度所以角PBC+角PCB=(2*180-116)/2=122度所以角P=180-122=58度
该题运用的思想是:三角形的两个内角之和,等于第三个角的外角证明:角BAC大于角B因为CE为角ACE的平分线所以角ACE等于等于角ECD由此可得:角B+角BAC=角ACD=角ACE+角ECD角BAC=角
证明:∵CE是∠ACD的平分线∴∠ACE=∠ECD∠ECD是△BCE的外角∴∠ECD=∠E+∠EBC∴∠ECD>∠EBC∴∠ACE>∠EBC即:∠EBC<∠ACE
相等再答:没让写证明就别写再问:让写证明了。。。再答:设角A为x度或直接使用。我没空呃作业还有不少。。。
PM=PN=PQ由题意知PM⊥DA,PN⊥AE,PQ⊥BC∵PB是∠DBC的平分线∴PM=PQ同理可得PQ=PN∴PM=PQ=PN(因为没有图,所以画了草稿,但可能有些不同,大体应该差不多.)
在BA延长线上取一点D使AC=AD;因为P在∠DAC的角平分线上,∴PD=PC.(可以用SAS证明)∴PB+PC=PB+PD;AB+AC=AB+AD=BD;比较等号右端,可知PB+PD>BD;∴PB+
是不是探求∠P与∠A的数量关系∠PCE=∠PBC+∠P∠ACE=∠A+∠ABC,即2∠PCE=2∠PBC+∠A,把上面的式子代入这里∠A=2∠P
证明:过P作PF⊥AB于F、PM⊥BC于M、PN⊥AC于N.∵角dac,角ace的平分线交于点p∴PF=PNPN=PM∴PF=PM∴点p在角b的平分线上
BP是角ABC的外角平分线,则P到AB,BC距离相等,CP是角ABC的外角平分线,则P到AC,BC距离相等,故P到AB,AC距离相等,P在角A的平分线上.
∵∠1=∠2+∠3,∴∠2=∠1-∠3,∠A=∠ACE-∠ABC,∵点P是∠ABC和外角∠ACE的角平分线交点,∴∠A=2∠1-2∠3=2(∠1-∠3)=2∠2,∴∠p=1/2∠A
在BC延长线上取一点D∵BP平分∠ABC,CP平分∠ACD∴∠ABC=2∠PBC,∠ACD=2∠PCD∵∠PCD是△PBC的外角∴∠PCD=∠P+∠PBC两边都乘以2得2∠PCD=2∠P+2∠PBC即
如图:过P作PD⊥AB,PE⊥AC,PF⊥BC,重足分别是D、E、F因为:PB,PC分别是外角平分线所以:PD=PF,PE=PF所以:PD=PE所以:点P在角BAC的平分线上