如图,直线y=-2分之1x 3分别交x轴,y轴于点a,b.o是原点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:46:35
根据题意得f′(x)=3x2,设切点(m,n)则曲线y=f(x)上点(m,n)处的切线的斜率k=3m2,∴3m2=1,m=±33,故切点的坐标有两解.由直线的方程可得中斜率等于1的直线有两条,故选C.
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
首先是将点A{1,m}B{4,n},代入解析式直线y=2分之1+1,可以求出m与n的值,从而求出点A,B的坐标,然后我比较喜欢用矩形框起来,大的矩形面积再减去小的空白面积,就是三角形的面积了.
图上没有点C,C点在哪里?
(1)因为直线y=kx+b经过点B(0,2)所以将点B(0,2)代入直线y=kx+b有0+b=2b=2(2)因为“将直线y=kx+b绕着点B旋转到与x轴平行的位置”所以斜率k=0,直线y=kx+2变成
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为y=-3
(2)q(2,3).ac=ap=根号10.过点p做x轴垂线,垂足为m,ph=3,三角形acg全等于三角形pam,所以ap/ac=pm/ag,所以ag=3,cg=1,同理,eh=6,所以cg+eh=7(
解方程组y=-4分之3x+6y=4分之3x-2得x=16/3,y=2交点P的坐标(3分之16,2)直线y=4分之3x-2交x轴于(8/3,0﹚S三角形pcA=½×﹙8-8/3﹚×2+
(1)因为:直线y=kx-1与y轴交于点C,则点C(0,-1).所以:OC=1,又tan∠OCB=2分之1,所以:OB=1/2,即:B(1/2,0),又B点为直线y=kx-1与x轴的交点,所以:1/2
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
设切点为P(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x切线的斜率k=y′|x=a=3a2+6a=-3,得a=-1,代入到y=x3+3x2-5,得b=-3,即P(-1,-3),y+3=
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1)则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为3x+y+
∵直线x=t与y轴平行∴y轴上A点到直线x=t的距离=|t|也即BC边上的高=|t|∵直线x=t与反比例函数y=x分之2,y=-x分之1的图像分别交于B,C两点∴BC=|yB-yC|=|(2/t)-(
(1)y=x/2与y=k/x联立方程组,求得交点(根号2k,二分之根号2k),(负根号2k,负二分之根号2k).已知A点横坐标为4,则根号2k为4,所以k=8.(2)由(1)得,k=8,由已知C点纵坐
1)A(x,m/x)B(x,0)S=AB*OB/2=Im/xI*IxI/2=-(m/x)*(-x)/2=m/2=3m=62)A(-4,0)C(0,2)P(2,3)B(2,0)过P点的反比例函数,k=x
n(n+1)分之1=nx(n+1)分之n+1-n=n分之1-(n+1)分之1
A-B=(x3+2y3-xy2)-(﹣y3+x3+2xy2)=x³+2y³-xy²+y³-x³-2xy²=3y³-3xy²
发现的规律是-1/[n*(n+1)]=-1/n+1/(n+1)所以(-1X2分之1)=-1+1/2(-2分之1X3分之1)=-1/2+1/3以此类推(-2007分之1X2008分之1)=-1/2007