如图,直线y=kx c与抛物线y=ax² bx c的图像都经过

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:49:40
如图,抛物线y=-x的平方-2x+2,与y轴交与C点,点D为抛物线顶点,CE⊥OD交抛物线于E,求直线CE的解析式.

由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3

如图,在平面直角坐标系中,抛物线y=-1/2x²+bx+4与直线y=kx+4交于点A、

我发现,你没图啊再问:再答:你图都没画对,第一问很简单啊,其实抛物线和直接必交于c(0,4)根据tan=1/2,等到A(-2,0)带入方程,b=1,k=2,然后你B都能求出来啊B(4,0)D是定点就在

如图,在平面直角坐标系,直线y=kx+1交y轴与C,与抛物线y=-x^2+bx+c交于AB两点

因为在三角形PFG中,两边之差小于第三边,所以lPG-GFl小于等于PF当lPG-GOl取得最大值时,P、F、G不能构成三角形,所以P、F、G共线,即点G在PF的延长线上.

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在此抛物线上,矩

(1)∵直线y=ax+3与y轴交于点A,∴点A坐标为(0,3),∴AO=3,∵矩形ABCO的面积为12,∴AB=4,∴点B的坐标为(4,3),∴抛物线的对称轴为直线x=2;  &n

如图已知抛物线Y=2/1x的平方与直线y=a(a>0)相交于A,B两点,且三角形AOB为直角三角形

同学,y=2/1x是抛物线么?题目写错啦,y=2/1x在一三象限,而y=a(a>0)在一二象限,只有一个交点啊

如图,已知抛物线y=ax²与直线y=kx+4交于A(8,8)直线与X轴的交点为C,与y轴的交点为B(1)求A及

1、由于A(8,8)所以8=8k+4,则K=1/28=64a则a=1/82、令x=8,则y1=1/8*4^2=2,y2=1/2*4+4=6即D(4,2)P(4,6)所以PD=4再问:过程有点简单了吧,

如图,过抛物线y^2=2px(p>0)的焦点F的直线与抛物线相交于M,N两点,

看得出你思路是利用向量相乘等于0,再利用维达定理,带入使等式为0.向量FM1和向量FM2是不是表示错了?应该用末点坐标减去初始点坐标,向量FM1=(x1-p/2,y1)

如图,已知过抛物线y^2=2px(p>0)的焦点F的直线x-my+m=0与抛物线

答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!

如图,已知抛物线y=x²+3x-4与x轴交于A,B两点,与y轴交于C点,直线y=2x+2与抛物线交于

(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点

如图,已知直线y=1/2x+1与y轴交于点A,与x轴交于点D,抛物线y=1/2x²+bx+c与直线交于A,E两

(1)y=1/2x+1与y轴交于点A,可以得到A点坐标为(0,1),又知B点坐标为(1,0),代入y=1/2x²+bx+c,解得b=-3/2,c=1,该抛物线的解析式为y=1/2x²

如图,已知直线y=-1/2x与抛物线y=-1/4x²+6交于A、B两点

再问:第三问的P点是怎么求出来的啊,那个算的过程我不太懂,不好意思·····再答:刚看见当时写错了可以这么说,AB的长已经确定了,我们把AB当做底,只要求出在AB上的高,就可以求出面积了,现在要求面积

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

如图,已知抛物线y=x²-6x+9的顶点为点P,与 y轴交于点B,一经过点B的直线y=-x+b与该抛物线交于点

(1)抛物线与y轴交点为(0,9),所以b=9直线方程为y=-x+9与抛物线方程联立,解得x=0,5所以交点A为(5,4)(2)P点坐标为(3,0),到直线y=-x+9的距离为3√2AB长度为5√2所

如图,点A在抛物线y=1/4x²上,过点A作与x平行的直线交抛物线于点B,延长AO、BO分别与抛物线y=-1/

分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得

如图已知直线y=kx+b与抛物线y=x2^交与P,Q两点,p横坐标为2且与x轴交与M(2,0)求直线y=kx+b表达

1、因为P在抛物线y=x²上,且横坐标为-2所以P的坐标(-2,4)P(-2,4),M(2,0)代入直线方程y=kx+b-2k+b=42k+b=0解得k=-1,b=2所以直线为y=-x+22

(2014•东昌府区模拟)如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为

∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.

如图,直线y=x与抛物线y=x²-x-3交于A.B两点,点P是抛物线上一个动点,过点P作直线PQ⊥x轴,交直线

第一题,设p为(x.y)所求点满足两个条件(1)y=x平方-x-3(2)|x-y|=2根号2(点到直线距离为根号二,这根据勾股定理可得)这时分两种情况考虑,一是x-y=2时,这时好像算得(三分之七,三