如图,角PAQ是小村小虎一脚

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:53:43
求一道数学题解法如图 正方形ABCD的变长为1 BC.CD上各有一点P和Q 若角PAQ=45度 求三角形CPQ的周长

辅助线:把三角形ADQ的边AD旋转与AB重合证三角形AQP与它左边那个三角全等(自己慢慢看,我不好说.)证得周长是2

如图,在三角形ABC中,角BAC等于126°,MP和NQ分别是AB和AC的垂直平分线,求角PAQ的度

由MP,NQ分别是AB和AC的垂直平分线,∴∠B=∠PAB,∠C=∠PAC,有2∠B+2∠C+∠PAQ=180°(1)∠B+∠C+∠PAQ=126°(2)(2)×2-(1)得:∠PAQ=126×2-1

在正方形ABCD中,P.Q分别是BC.CD上的点,角PAQ=45度,证BP+DQ=PQ

把△ABP,以A为原点旋转,使AB和AD重合,重合后的新三角形全等于△APQ所以BP+DQ=PQ

如图,在△ABC中,PM,QN分别是AB,AC的垂直平分线,∠BAC=110°.求∠PAQ的度数.

∵∠BAC+∠B+∠C=180°(△内角和为180°)∴∠B+∠C=180°-∠BAC=70°(等量代换)∵MP垂直平分AB(已知)∴∠B=∠MAP(垂直平分线的性质)/(垂直平分线上的点到线段两端的

已知,如图,在菱形ABCD中,AB=4,角B=60度,点P是射线BC上的一个动点,角PAQ=60度,交射线CD于点Q,设

(1)作辅助线AC,由角B=60度,AB=AC,得三角形ABC为等边三角形角B=角ACD=60度AB=AC角BAC=角PAQ=60,则角BAP=60-角PAC=角CAQ可得三角形ABP与ACQ全等因此

在正方形ABCD中,P,Q是AB,CD上两点 角PAQ=45度 角BAP=25度 求角AQP

兄弟,P是BC上的吧要是BC上的,那就将△ABP绕A点顺时针旋转90度使AB与AD重合,旋转后的P点记做E此时△ABP≌△ADE易知角EAQ=45度=角QAPAE=AP,AQ=AQ△EAQ≌△PAQ角

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度如图,已知,在正方形ABCD中,P、Q分

S三角形ADQ+S三角形ABP=S三角形APQ做AE等于AQ,延长CB到点E.因为正方形,所以AB=AD,∠D=∠ABP=90°,因为∠PAQ=45°,所以∠DAQ+∠BAP=45°在Rt△AEB与R

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度.求证:PB+DQ=PQ

证明:延长CD到点E,使DE=BP连接AE则△ADE≌△ABP(SAS)∴AE=AP,∠DAE=∠BAP∵∠DAB=90°,∠PAQ=45°∴∠BAP+∠DAQ=45°∴∠EAQ=45°=∠PAQ∵A

如图,△ABC中∠BAC=100°,MP,NQ分别是AB和AC的垂直平分线,MP交BC于Q.求∠PAQ的度数.

由垂直平分线性质可知令∠BAP=∠ABP=m,∠QAC=∠QCA=n;∠BAC=∠BAP+∠PAQ+∠QAC=m+n+∠PAQ=100(1)在△ABC中,∠BAC+∠ABC+∠BCA=180∠ABC=

如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一动点,AP=AQ,∠PAQ=90°,连接CQ.

(1)证明:∵∠BAP+∠CAP=∠BAC=90°,∠CAQ+∠CAP=∠PAQ=90°,∴∠BAP=∠CAQ,在△ABP和△ACQ中,AB=AC∠BAP=∠CAQAP=AQ,∴△ABP≌△ACQ(S

如图,圆o的半径为5,角PAQ=90度,AP切圆于T,AQ交圆O于B.P 若AT=4,求出AB的长

证明:连接OT,∵AT是切线,∴OT⊥AP.又∵∠PAB是直角,即AQ⊥AP,∴AB∥OT,∴∠TBA=∠BTO又∵OT=OB,∴∠OTB=∠OBT.∴∠OBT=∠TBA,即BT平分∠OBA.

初二数学题解答如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ为多少度?是上面那个三角形的图!

MPNQ是AB,AC的垂直平分线∠BAP=∠ABP∠CAQ=∠QAC∠PAQ=∠BAC-∠BAP-∠CAQ=∠BAC-∠ABP-∠QAC而∠ABP+∠QAC=180°-∠BAC(三角形内角和180°)

(2003•上海)如图,已知AC平分∠PAQ,点B、D分别在边AP、AQ上.如果添加一个条件后可推出AB=AD,那么该条

添加A选项中条件可用ASA判定两个三角形全等;添加B选项中条件无法判定两个三角形全等;添加C选项中条件可用ASA判定两个三角形全等;添加D选项以后是ASA证明三角形全等.故选B.

如图,在△ABC中,∠BAC=130°,PM、QN分别是AB、AC的垂直平分线,求∠PAQ的度数

∠PAM+∠QAN=∠PBM+∠QCN=180-∠BAC=50度∠PAQ=130-50=80度

在正方形ABCD中,P,Q分别为BC和CD上的点,且角PAQ=45°,是说明BP+DQ=PQ

哎……简单说就是把△ABP绕A点旋转,使得AP边与AD边重合,做出来的三角形AP'D,证明△AQP和△AP'Q全等具体就是我慢慢说……证明:延长QD至P'使得DP'=BP,连结AP'由于ABCD是正方

如图,在三角形ABC中,AB=AC,角BAC=90度,点P为BC边上一动点,AP=AQ,∠PAQ=90°,连接CQ

情况一:BP=CP时,△ACQ是等腰三角形.情况二:PB=AB时,由△ACQ相似于△ABP得. 情况三:P点与C点重合时再问:我觉得P与三角形ACQ没关系啊再答:有关系,∠PAQ=90°说明P动时,∠

如图,∠PAQ=30°,在射线AP上取两点B、C(1)在AQ上求一点M,使MB+MC最小

过点B作BD⊥AX,垂足为X,延长AX到Y,使XY=AX,连结YC交AQ于M,则M即为所求作的点.

如图三角形ACB为等腰直角三角形角ABC=90度点p在线段BC上,以AP为腰长,作等腰直角三角形PAQ,QE垂直于AB于

如图(上传较慢,请稍候),延长QE交AP于F,∵QE⊥AB,BC⊥AB,∴QE∥BC,∴∠BPA=∠QFA,∵∠QAE+∠FAE=∠FAE+∠APB=90°,∴∠QAE=∠QFA,∴∠QAE=∠APB

如图,在正方形ABCD中,P,Q分别在BC,CD上,PB+QD=PQ,利用两角和(差)的正切公式证明角PAQ=4\派

1.设BP=X,DQ=y,正方形边长为a,角PAQ正切可以用角BAP和角DAQ的正切来表示,再将后面两个角用x,y,a表示的分式(其中含有xy,x+y);2.在直角三角形CPQ中应用勾股定理找出x,y