如图,锐角三角形ABC,分别是AB,AC为边向外侧,BC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:16:48
证明:(1)以A点为顶点,做一条垂直于BC的高AD;∵AD=AC*sinC=bsinC∴S(△ABC)=1/2*BC*AD=1/2*absinC(2)三角形ABC的面积S=1/2absinC=1/2*
连接ME,MF,∵BE,BF是高,∴⊿BEC,⊿BFC都是直角三角形∵M为BC的中点,∴MF=ME=1/2BC,(直角三角形斜边上的中线等于斜边上的一半)∵N为EF的中点,∴MN⊥EF
1、设边长为a则S△=1/2*120*80=1/2*a*(80-a)+1/2*(120-a)*a+a^2得a=482、设宽为a,有两种情况1、长在BC边则S△=1/2*120*80=1/2*2a*(8
∵E,F,G分别是AC,AB,BC的中点∴EF、FG分别的△ABC中位线∴EF∥BCFG=1/2AC∴四边形DEFG是梯形∵AD⊥BCE是Rt△ACD斜边AC的中点∴DE=1/2AC∴FG=DE∴四边
∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°∵∠A=∠A∴△ABE∽△ACF∴AE/AF=AB/AC∴AE/AB=AF/AC∵∠A=∠A∴△AEF∽△ABC
GF平行且等于BC的1/2,所以GF//DEEF=1/2*AB=DG(三角形ADB为直角三角形,从直角到斜边中点的连线等于斜边的一半)所以四边形DEFG是等腰梯形.希望对您有所帮助如有问题,可以追问.
因为AC=A'C'AD=A'D,AD,A'D'分别是锐角三角形ABC和锐角三角形A'B'C'中BC,B'C'边上的高∠ADC=∠A'D'C'=90°所以BD=B'D' 同理DC=D'C′所以BC=B
∵F,E是AB,AC的中点∴FE//BC∵G,F是BC,AB的中点∴2FG=AC∵AD⊥BC,E是AC的中点∴DE是Rt△ADC斜边AC上的中线∴2DE=AC∴FG=DE∴四边形DEFG是等腰梯形
连接BN,CM∵等边△ACN,等边△ABM∴AB=AM,AC=AN∠CAN=∠BAM=60°∴∠CAN+∠BAC=∠BAM+∠BAC即∠BAN=∠CAM∴△BAN≌△MAC∴BN=CM又∵BN=2EF
若∠C=∠C′可证明:△ABC≌△A′B′C′证明:∵AB=A′B′,A′D′=AD∴RT⊿ABD≌RT⊿A′B′D′(HL)∴∠B=∠B′∵∠C=∠C′AB=A′B′∴△ABC≌△A′B′C′(AA
1、在△PBC平面上作PM⊥BC,交BC于M,在△PAM平面上作AG⊥PM,交PM于G,AG就是平面PBC的垂线.证明:∵PA⊥平面ABC,∴PA⊥BC,而BC⊥PM,∴BC⊥平面PAM,而AG在PA
连接EM,FM三角形BFC为直角三角形,M是BC的中点,所以FM=BM=MC三角形BEC为直角三角形,M是BC的中点,所以EM=BM=MC则EM=FM三角形EFM为等腰三角形,N是EF的中点所以MN垂
稍等再答:证明:∵正△ABM,正△CAN∴AB=AM,AC=AN,∠BAM=∠CAN=60∵∠BAN=∠BAC+∠CAN,∠MAC=∠BAC+∠BAM∴∠BAN=∠MAC∴△ABN≌△AMC(SAS)
证明:做AB,AC,的中点记为G,H.连接DG,GE,EH,HF.则DG,GE,EH,HF均为三角形的中线由三角形中线定理的DG平行且等于1/2AM=1/2AB=EHDG=EH同理,GE=FH在三角形
ABC是锐角三角形.分别以AB,AC为边向外侧作等边三角形ABM和等边三角形CAN.D、E、F分别是MB、BC、CN的中点,连结DE、EF.求证DE=FE证明:连结CM、BN∵△ABM、△ACN为等边
同学抄题也要认真一点啊
连ME,MF.NMF全等NME
可以证明CD⊥BG,因为CD∥MH,BG∥NH.设CD交BG于K,证明∠BKC=90°,而∠BKC=∠ABG+∠ACD+∠BAC.因为△DAC≌△BAG(第一个小题的证明会得到这个结论),所以∠ACD
连接FM、EM∵角BFC=90°,BM=CM∴FM=0.5BC∵角BEC=90°,BM=CM∴EM=0.5BC∴FM=EM∵FN=EN∴MN⊥EF