如图.抛物线L:y=ax² 6x c与x轴交于A.B(3,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:25:21
如图9,已知直线l:y=3/2x 及抛物线C:y=ax^2+bx+c(a不等于0) ,且抛物线C图象上部分点的对应值如下

解法:时间有限,我简单的地方就不一步步解答了:首先,由抛物线的几个x、y对应值,代入抛物线方程式,是不是肯定可以得出抛物线的具体方程?恩,这个你可以自己代入去算.抛物线的具体方程经过代入求解后,得y=

如图抛物线y=ax²+bx+c的对称轴是x=1,下列结论

答:抛物线开口向上,a>0抛物线y=ax^2+bx+c的对称轴x=-b/(2a)=1,b=-2a0,3a+c>0所以:(a+c)^2-b^2=(a+c)^2-4a^2=(a+c-2a)(a+c+2a)

如图,直线l经过点P(0,-2),且与抛物线y=ax的平方交于M(1,-1),N(-2,b)两点.

(1)设直线解析式为y=kx+c,由其过点P﹙0,-2﹚M﹙1,﹣1﹚所以c=-2,1K-2=﹣1,K=1,所以直线的解析式是Y=X-2抛物线过点M﹙1,-1﹚,所以a=﹣1,抛物线为Y=X²

如图.已知抛物线y=ax²-4x+c经过点A(0,-6)和B(3,-9)1.求出抛物线的解析式2写出抛物线对称

1)有题意得:c=-69a-12-6=-9解得a=1所以y=x²-4x-62)对称轴为x=2当x=2是y=-10所以顶点为(2,-10)3)由题意得Q(4-m,m)所以m2-4m-6=mm=

如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(

问题补充:如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围a的取值范围是-0.7

如图1,已知抛物线 y=ax^2 的顶点为P,A、B是抛物线上两点,AB‖x轴,△PAB是等边三角形.

(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时

如图抛物线,y=ax^2+bx+2交x轴于A(-1,0),B(4,0)两点.

抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

已知直线l:y=2(x-8),抛物线y^2=ax(a>0),(1)l过抛物线的焦点时,求a

解析,y²=ax,焦点坐标为(a/4,0)直线y=2(x-8),过焦点,故,a=32.【2】设B(x1,y1),C(x2,y2).另设y²=32x的焦点为O(8,0)焦点O又是△A

如图,抛物线y=ax²向右平移1个单位,向下平移4个单位,得y=(x-h)²+k,所得抛物线

抛物线y=ax²向右平移1个单位,向下平移4个单位,得y=(x-h)²+k则h=1,k=-4所以新抛物线:y=(x-1)²-4,顶点D(1,-4)其与x轴的交点为:0=(

如图,在直角坐标系xOy中,抛物线y=2ax2-6ax+6与y轴的公共点为A,点B,C在抛物线上,AB平行X轴,∠AOB

1)抛物线y=2ax2-6ax+6与y轴的公共点为A即X=0时Y=6A(0,6)则B点的纵坐标为66=2ax2-6ax+6X=0或X=3B(3,6)过C点作Y轴的平行线交X轴于D点三角形AOB相似于三

如图,抛物线y=x^2-2mx+(m+1)^2(m>0)的顶点为A,另一条抛物线y=ax^2+n(a

设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

如图,抛物线y=ax²+c(a

(△ABG+△BCD+四边形OABC)面积对称与四边形ODEF面积所以说△ABG+△BCD面积=10-6=4

如图,在平面直角坐标系中,已知抛物线y=ax²+bx+c交x轴于A(2,0),B(6,0

(1)解设:y=a(x-x1)(x-x2)由A、B俩点知:y=a(x-2)(x-6)y=a(x的平方-8x+12)由C点知:2√3=12aa=√3\6