如图17所示.P是三角形ABC内一点,D,E,F,G,分别是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:42:25
如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

在三角形ABC中,AE和BF是中线且交于点P,已知三角形BEP的面积为5,求三角形ABC的面积.如图::

中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

如图,已知P是三角形ABC内任一点,求证:AB+AC大于BP+PC

延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC

如图,三角形A'B'C'是由三角形ABC平移后得到的,已知三角形ABC中任一点P(x0,y0)

分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应

复习“全等三角形”的知识时,老师布置了一道作业题:“如图1所示,已知,在三角形ABC中,AB=AC,P是三角

P点在△ABC内部时,BQ=CP成立,这个非常简单∵∠QAP=∠BAC又:∠QAB=∠QAP-∠BAP,∠PAC=∠BAC-∠BAP∴∠QAB=△PAC又AB=AC,AQ=AP∴△QAB≌△PAC∴B

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

三角形ABC平移后得到如图 所示位置的三角形A1B1C1,……

如果我没看错应该是A1(2,4),B1(-3,0),C1(4,-1)就以点A为例x+3=2,x=-1,y-4=4,y=8,那么A的坐标就是(-1,8)同理B坐标为(-6,4),C坐标为(1,3).至于

如图,P是三角形ABC内的任意一点.求证:PB+PC大于AB+AC.

题目错了!延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+D

如下图所示,三角形ABC是等腰直角三角形,BC是斜边,点P是三角形ABC内一点,将三角形ABP绕点A逆时针旋转%

将△ABP绕点A逆时针旋转后,与△ACP'重合后,AB与AC重合.此时,AP’=AP=5.∵∠PAB=∠P'AC,∴∠P'AP为直角.∴△P'AP为直角等腰三角形,∴PP’=5√2.

如图,三角形ABC.BP,CP是三角形ABC的外角平分线,求角A与角P的关系

相等再答:没让写证明就别写再问:让写证明了。。。再答:设角A为x度或直接使用。我没空呃作业还有不少。。。

如图1,P是三角形ABC内一点,连接PA、PB、PC,在三角形PAB、三角形PBC和三角形PAC中

你好!(1)由直角三角形斜边上的中线等于斜边的一半得到BD=CD,所以∠DBC=∠DCB,又因为∠BEC=∠ACB=90°,所以△BEC∽△ACB,(2)由相似三角形及p是三角形自相似点,得到∠B+∠

如图(1)所示,在三角形ABC中,点P是两条内角平分线的交点,试问∠P与∠A有怎样的数量关系,并说明理由.

再答:希望能得到你的好评再问:虽然没有参考,但还是谢谢你的帮助,好评!

如图2所示,在三角形abc中,点p是一条内角平分线和一条外角平分线的交点∠a,∠p有怎样的数量关系,并说明理由

(1)∠A与∠P之间的数量关系是∠P=90°+1/2∠A∠ABC+∠C=180°-∠A∠P=180°-1/2(∠ABC+∠C)=180°-1/2(180°-∠A)=90°+1/2∠A(2)(3)稍等再

如图,PB,PC分别是三角形ABC的外角平分线且相交于点P.求证:P在

如图:过P作PD⊥AB,PE⊥AC,PF⊥BC,重足分别是D、E、F因为:PB,PC分别是外角平分线所以:PD=PF,PE=PF所以:PD=PE所以:点P在角BAC的平分线上