如图1在rt△abc中,∠acb=90°,ac=6cm

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:53:47
已知,如图,在Rt△ABC中,∠C=90°,AC=根号3

∵∠C=90,∠ADC=60,AC=√3∴AD=AC/(√3/2)=√3/(√3/2)=2CD=AC/√3=√3/√3=1∵BD=2AD∴BD=4∴BC=BD+CD=4+1=5∴AB=√(BC

如图,在Rt△ABC中,∠BAC=90,E、F分别是BC,AC的中点,

(1)连接EF,AEEF为△ABC中位线,所以EF‖AB且EF=AB/2=AD所以四边形ADFE为平行四边形所以AF与DE互相平分(2)因为四边形ADFE为平行四边形所以DF=AE=BC/2=2

如图,在Rt△ABC中,∠ACB=90°,AC=BC,∠CAD=∠BAD,

证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A

如图,已知在Rt△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC的长.

过点D做DE垂直于AB垂足为E根据角平分线的性质定理CD=DE=1.5,根据勾股定理的BE=2,因为三角形BED相似于三角形BCA,所以BE:BC=DE:AC即2:4=1.5:AC,所以AC=3

如图 在rt△abc中 ∠C=Rt ∠,AC=3,BC=2. 求sinA,cosA,tanA的值.

sinA=2/√13,cosA=3/√13,tanA=2/3如果本题有什么不明白可以追问,另外发并点击我的头像向我求助,请谅解,

如图,在Rt△ABC中,AB=AC,∠BAC=90°,D是BC的中点.

1、连接AD∵AB=AC,D是BC的中点∴AD是△ABC的中垂线∵∠A=90°∴∠B=∠C=45°∴∠DAC=45°=∠C∴CD=AD=BD2、∵AN=BM,AD=BD,∠NAD=∠B∴△AND≌BM

如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.

1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

如图,在Rt△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC的长

过D作DE垂直AB,垂足为E因为∠1=∠2,∠C=∠AED=90度,AD=AD所以△ACD≌△AED(AAS)所以AC=AE,CD=DE=1.5因为BD=2.5所以在三角形BDE中运用勾股定理得BE=

如图,在Rt△ABC中,∠ACB=90度,AC=3,AB=5

∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.∴BC=4.以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R

1 如图,在RT△ABC中,BD是角平分线,AC=6,则AD=

1由题意知:AB/AD=BC/CD,BC=AC,角ACB为90度,AB=6*1.414=8.484设AD为X,则8.484/X=6/(6-X),计算得:X=3.514(约)2设腰为X,则[(16-2X

如图,在Rt△ABC中,∠C=90,AC=BC,AD平分∠BAC

作DE垂直AB∵△ABC是等腰直接三角形∴∠B=45°∴△CDE是等腰直接三角形∴DE=BE∵AD是角平分线∴∠CAD=∠EAD∵在RT△ACD和RT△AED中∠CAD=∠EAD,AD是公共边∴由AS

如图,在Rt△ABC中,BD是斜边AC上的高,那么∠1与∠A、∠2与∠C相等吗?为什么

相等因为:角B+角A+角C=180(三角形内角和为180°)又因为:角B=90°(已知)所以:角A+角C=90°(等式性质)因为BD是AC的高(已知)所以角ADC等于角CDA(高的意义)因为角A加角2

如图,在Rt△ABC中,∠C=90°,AC=6,cotB4/3

(1)cotb等于bc比ac等于4:3也就是说bc等于8(2)作PD‖BC设AP=BQ=x则QC=PC=8-x,有A字形相似得PD=4/5x,AD=3/5xCD=6-(3/5)x三角形PCD中用勾股定

如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经

∵∠ACB=90°,AC=BC=1,∴AB=2,∴S扇形ABD=30•π(2)2360=π6.又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△

如图 在Rt△ABC中 AB⊥AC AD⊥BC BE平分∠ABC 交AD于点E EF‖AC

选AAB=BF证明:∵∠BAC=90°,AD⊥BC∴∠BAD+∠ABC=∠C+∠ABC=90°∴∠BAD=∠C∵EF‖AC∴∠C=∠EFB∴∠EFB=∠EAB∵∠ABE=∠FBE,BE=BE∴△ABE

如图,在Rt△ABC中,BD是斜边AC上的高,那么∠1与∠A、∠2与∠C相等吗?为什么?

有一条定理:斜边上的高等于斜边的一半,可得AD=BD,BD=BC,即∠A=∠1,∠2=∠C.

如图,在Rt△ABC中,

(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,

如图,在Rt△ABC中,CB=AC,∠C=90°,∠1=∠2,AE⊥BE.求证AD=2BE.

延长AC和BE交于F点先证△AEF与△AEB全等,用ASA证可得EF=EB,即BF=2BE∵∠ACB=90°,∠AEB=90°∠CDA=∠BDE(对顶角相等)∴∠1=∠DBF再证△FBC与△ADC全等