如图1在三角形abc中点o是ac边上一动点过点o作直线mn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:23:14
直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点
O为AB中点,所以OA=OB=OC,所以ABC在O的圆上连OD,OD=OB=OC=OA,四点共圆再问:我要过程再答:再简单不过了,总不能把定理再证明一遍吧.在Rt△ABC中,∠C=90度O为AB中点作
∵AB=AC ∴△ABC为等腰三角形 ∴∠B=∠C ∵D为BC中点 ∴BD=CD ∵AB=AC∠B=∠C BD=CD ∴△ABD全等于△ACD(SAS) 2. 
证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上
连接GO,FO根据边边边证得△AOG和△AOF全等∴∠GAO=∠FAO则AO与△ABC上∠A的角平分线重合连接AD三线合一定理∴AD是∠A的角平分线,且AD⊥BC∴点O在AD上,则OD⊥BC又∵OD是
证明:∵∠BPC=60°∴∠BAC=60°(同弧所对圆周角相等)∵AB=AC∴△ABC是正三角形(两边相等且夹角为60°的三角形是正三角形)∵P是AB弧中点∴PA=PB(在同圆中,等弧对等弦)又AC=
△OMN是等腰直角三角形∵△ABC是等腰直角三角形,O是BC中点∴∠B=∠OAN=45°,AO=BO,AO⊥BC∵BM=AN∴△OBM≌△OAN∴OM=ON,∠BOM=∠AON∵∠BOM+∠AOM=9
这和o无关啊……相似是必然的,中位线平行于底边,然后直接用平行或用AAA都可以证明相似~
如图∵OA'/OA=OB'/OB=1/2,∠A'OB'=∠AOB∴△A'OB'∽△AOB,∴∠A'B'O=∠ABO,同理可得∠C'B'O=∠CBO,∴∠A'B'O+∠C'B'O=∠ABO+∠CBO,即
从O、A'、B'、C'分别画垂直线到AB、AC、BC上可以证明出A'B'=1/2*AB、A'C'=1/2*AC、B'C'=1/2*BC即:A'B':A'C':B'C'=AB:AC:BC得出△ABC相似
连接AO在三角形ABO,ACO中DF,EG分别是中位线,各自都平行等于AO的一半所以DF平行等于EG所以四边形DFGE是平行四边形
在△ABC中,因为D、E分别是AB、AC的中点,所以DE∥BC,且DE=1/2BC在△OBC中因为G、H分别是OB、OC的中点,所以GH∥BC,且GH=1/2BC所以DE∥GH,且DE=GH所以四边形
图呢再问:再答:似乎DBC=BCE没用啊。你只需连接BE,然后在由圆的定理就做出来了。再问:什么是圆的定理再答:再答:P点无论在圆上哪里。APB都是直角。且PO=AB/2再问:再问:这个怎么写再答:啊
找出bc的中点F,连接AF.三角形三条中线交于一点,所以必通过O点.角EBC=角DCB所以BO=COBF=CF以上三项得出全等三角形BFO和CFO所以角BFO=角CFO所以又得出全等三角形AFB和AF
垂直.连接OAOA1,作C1H垂直AA1延长线于H则有:角AOA1和COC1=a所以:角AA1O=角CC1O又因为A1O垂直B1C1即:角A1OC1=90°根据四边形内角和360所以:角A1HC1=9
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
DFC,DCK相似,得出结论
1、设AD与BC相交于E,则BD弧=CD弧,〈BAD=〈DAC,△ABE∽△ADC,△ABE∽△CED,△ACE∽△BDE,△CED∽△ACD,2、DC^2=DF*DK,等式成立.证明:∵〈DKC=〈
连结PA,PB,PC.若sin角BPC=24\25,求tan角PAB的值?