如图3.ab是圆o的直径,弦cd交ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:02:12
如图.AB是圆O的直径,弦CD垂直于AB,角C等于30°,CD=23,则扇形阴影的面积

连接CO∵CD为⊥于直径的弦∴CE=DE∵∠C=30°∴∠A=60°∵OA=OC∴△ACO为等边三角形∴AC=AO=OD∵∠AEC=∠DEO=90°∴△ACE≌△ODE(HL)∴S△ACE=S△ODE

如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证

证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC

如图,已知AB是圆o的弦,AB的垂直平分线交圆o于点C,D,交A,B于点E,AB=6,DE:CE=1:3,求圆o的直径

设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3

如图,AB是圆O的直径,AD是弦,E 是圆O外一点,EF垂直AB于F,交AD于点C,且CE=ED,求证:DE是圆O的切线

证明:连接OD∵OD=OA∴∠ODA=∠A∵EC=ED∴∠EDC=∠ECD=∠ACF∵EF⊥AB∴∠A+∠ACF=90°∴∠ADO+∠CDE=90°即OD⊥DE∴DE是圆O的切线

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

证明:连接AG并延长交BC于D,连接PD,连接OG交AC于E则G是重心,∴E为AC中点,而AO=BO,∴OE//BC=>AG=GD,又AQ=QP,∴QG//PD=>QG//面PBC

如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD

作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE

如图ab是圆o的直径c是弧bd的中点

木分啊.[1].连接AC、OC、BC弧BC=弧CD,所以角DAC=角DAC,又因为角BAC=角OCA所以角DAC=角ACO,所以AD平行OC,所以角DAB=角COB三角形ADB与三角形OEC皆为直角三

如图 AB是圆O的直径 C是弧AD的中点…

证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

如图1,AB是圆O的一条弦,点C是弧AB的中点,CD是圆O的直径,过点C的直线l交AB所在直线于E,交圆O于F

(1)角CEA=角D.(2)结论仍成立.证明:CD为直径,则∠DFC=90°,得∠D+∠DCF=90°;点C为弧AB的中点,则CD垂直AB,得:∠CEA+∠DCF=90°.所以,∠CEA=∠D.

如图,AB是圆O的直径,弦CD⊥AB于P.

1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√

如图AB是圆O的直径

解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

如图,已知AB是圆O的直径,点C、D在圆O上,且AB=6,BC=3.

(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,

如图,AB是圆O的直径,C是弧BD的中点

(1)证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF(2)连接OC,交BD于点M∵C是弧BD的中点∴O

如图,AB是圆O的直径,C是圆周上的一点,PA⊥平面ABC.

证明:1)因为:AB是圆O的直径,C是圆O上的一点所以:∠ACB=90°所以:AC⊥BC因为:PA⊥平面ABC所以:PA⊥BC所以:BC⊥平面PAC所以:BC⊥PC即有:PC⊥BC2)因为:PA⊥平面

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=