如图AB=AC 点D E分别在AC AB上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:37:00
(1)由题意△CDE与△ABCS相似.△CDE/S△ABC=1/2有相似三角形性质知DE/AB=1/根号2故DE=5/根号2(2)由相似三角形性质知DE/AB=2故DE=2.5
1)因为ED//AB,FD//AC所以∠BDF=∠C,∠CDE=∠B因为ABC=AC所以∠B=∠C所以∠BDF=∠B,∠CDE=∠C所以FD=BF,ED=EC所以四边形AFDE的周长=AF+FD+ED
因为DE//BC,所以AD/AB=AE/AC=DE/BC又因为EF//AB,所以AE/AC=BF/BC综上,AD/AB=AE/AC=BF/BC=DE/BC用到的定理就是平行线截得的线段对应成比例.再问
二分之三再问:怎么算的再答:等边三角形的高,从A做垂线,交BC于点G,G为BC终点,勾股定理,AG=3再答:M.N分别为中点,连接与AG的交点为AG一半,DNEM交点做垂线为AG的1/4,面积=1/2
证明:∵D为BC边的中点,∴BD=CD,∵DE∥AB,DF∥AC,∴∠EDC=∠B,∠FDB=∠C,在△FDB和△ECD中,∠FDB=∠CDB=CD∠B=∠EDC∴△FDB≌△ECD(ASA);所以D
证明:∵AB=AC∴∠B=∠C∵DE⊥AB,DF⊥AC∴∠BED=∠CFD=90∵DE=DF∴△BDE≌△CDF(ASA)∴BD=CD∴D是BC的中点
DE:BF=3:4DE=FCFC:BF=3:4BF=4/7*21=12BF=12
因为AB=AC,∠B=∠C,A角共用,所以△ABE全等于△ADC,所以DC=BE,所以AD=AE又因为F是中点,所以AF垂直于DE,所AFD=90度
在△ABC中,已知:AB=AC,∴∠B=∠C.已知:点d是BC的中点,∴BD=DC.已知:DE垂直AC,DF垂直AB,垂足分别为E,F,∴∠BFD=∠CED=90°.在△BFD和△CED中,∠B=∠C
证明:∵DE//BC∴AD/AB=AE/AC=DE/BC∵EF//AB∴AE/AC=BF/BC∴AD/AB=AE/AC=BF/BC=DE/BC此命题成立,刚才我答了,被删除.却发现你采纳错误答案
(1)∵AB⊥AC CD⊥DE∴∠BAE+∠CAD=90°,∠CAD+∠DCA=90°,∴∠DCA=∠EAB;(2)∵CD⊥DE,BE⊥DE,∴在△ADC和△BEA中,∠DCA=∠EAB∠D
1∵AB=AC∴∠B=∠C∵DE‖BC∴四边形BCED是等腰梯形(同一底边上两角相等的梯形是等腰梯形)2将△ADE沿E旋转180°得平行四边形BCD'D作DF⊥BC∵BD=CE∵∠A=60°∴△ADE
∵∠A=∠A,AD/AB=AE/AC∴△ABC∽△ADE∴∠ABC=∠ADE∴DE∥BC
证明:∵DF//AB∴∠DFC=∠A,∠FDC=∠B∵DE//AC∴∠EDF=∠DFC,∠EDB=∠C∴∠EDF=∠A∵∠EDF+∠FDC+∠EDB=∠BDC=180°(平角)∴∠A+∠B+∠C=18
∵BD=CE,CD=BE,BC=CB∴⊿BCD≌⊿CBE(SSS)∴∠DCB=∠EBC∴AB=AC连接BC,由已知可得BD=CE,CD=BE,BC=CB,所以三角形BDC全等于三角形CEB,则角ABC
连接AE和AG∵∠BAC=120°,AB=AC∴∠B=∠C=30°∵D是AB的中点,且DE⊥AB;F是AC的中点,且GF⊥AC∴DE是AB的中垂线,GF是AC的中垂线∴BE=AE,AG=CG∴∠B=∠
(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴四边形AEDF是矩形;(2)∵DE∥AC,DF∥AB,∴∠ADE=∠DAF,四边形AEDF是平行四边形,又∵AD是
答:证明:∵AE=EB,AD=DC,∴ED∥BC.∵点F在BC延长线上,∴ED∥CF.∵AD=DC,ED=DE,∠ADE=∠EDC,∴△ADE≌△CDE.∴∠A=∠ECD.∵∠CDF=∠A,∴∠CDF