1 (x*(x*x 1)½)的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:48:59
令e^x=u,则du=de^x=e^xdx=udx,有du/u=dx所以原式=∫du/u(1+u)²=∫du/u-∫du/(u+1)²-∫du/(u+1)=lnu+1/(u+1)-
1+x^4=(1+x²)²-2x²=(1+x²+√2x)(1+x²-√2x)1/(1+x^4)=[1/(1+x²-√2x)-1/(1+x&s
再问:非常感谢您的指点。
x-1)(x-2)=0x=1ORx=2x1>x2x1=2,x2=1x1-2x=2-1=1
∫x/(1+x²)dx=1/2*/d(1+x²)x/(1+x²)=1/2*ln(1+x²)+C
∫1/(x^4+4)dx=∫1/(x^2+2i)(x^2-2i)dx=∫(1/-4i)[1/(x^2+2i)-1/(x^2-2i)]dx=1/-4i∫dx/(x^2+2i)-1/-4i∫dx/(x^2
既要换元,又要分部,还涉循环积分.初学者有难度.
由题意x1^2+3x1+1=0x1^2=-1-3x1原式=x1*x1^2+8x2+20=x1(-1-3x1)+8x2+20=-3x1^2-x1+8x2+20=-3(-1-3x1)-x1+8x2+20=
第二问后面5x是x1还是x2再问:我再写一遍吧(1)求x1/x2+x2/x1;(2)求x1^2+5X2,是x2再答:
分部积分法∫(0~1)xe^x/(1+x)^2dx=-∫(0~1)xe^xd[1/(1+x)]=-e/2+∫(0~1)[1/(1+x)×(x+1)e^x]dx=-e/2+∫(0~1)e^xdx=-e/
sysxabf1=x+1;f2=0.5*x^2;int(f1,0,1)+int(f2,1,2)f=exp(ax)*sin(bx)inf(f)
考试时间紧迫,快点写上吧!如果(1+x)在根号外面:∫1/√x(1+x)dx设√x=t,则x=t²,dx=2tdt所以:原式=2∫dt/(1+t²)=2arctant+C=2arc
∫dx/(1-x^2)=∫dx/(1+x)(1-x)=∫dx(1/(1+x)+1/(1-x)=∫dx/(1+x)+∫dx/(1-x)=∫d(x+1)/(1+x)-∫d(x-1)/(x-1)=ln(x+
原式=∫d(lnx)/(lnx)^2=-1/lnx+C再问:∫上面是正无穷,下面是e的反常积分是多少。。。再答:原式=-1/lnx|(e→+∞)=0+1=1(因为lim(t→+∞)-1/lnt=0)
x²/(1+x²)=1-1/(1+x² ∴∫1-1/(1+x²)dx=x-∫1/(1+x²)dx=x-arctanx+c再问:再问:箭头指的再答:你
x=tant代入:∫(sect)^2dt/(sect)^3=∫dt/sect=∫costdt=sint+C=x/√(1+x^2)+C
ln(x+2)+c再答:你是高中的还是大学生。。。。→_→再答:你是高中的还是大学生。。。。→_→
原式=∫xdx/(1+x^2)-∫arctanxdx/(1+x^2)=1/2*∫d(1+x^2)/(1+x^2)-∫arctanxdarctanx=1/2*ln(1+x^2)-1/2*(arctanx
dx/x(1+x^4)=x^3dx/x^4(1+x^4)=dx^4/4(x^4+x^8)=dx^4/4x^4+dx^4/4(1+x^4)=(lnx^4)/4-ln(1+x^4)/4上下同乘x^3,就很