如图AD平分BAC;M是BC的中点ME AD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:41:46
证明:如图,延长CD交AB于点F,∵AD平分∠BAC,∴∠CAD=∠FAD,∵CD⊥AD,∴∠ADC=∠ADF=90°,在△ADC和△ADF中,∠CAD=∠FADAD=AD∠ADC=∠ADF=90°,
证明:如图,作DF⊥AB,DE⊥AC,∵AD平分∠BAC,∴DE=DF,∠BFD=∠CED=90°,∵D是BC的中点,∴BD=CD,在Rt△BDF和Rt△CDE中,DF=DE,BD=CD∴Rt△BDF
过D分别做AB、AC的垂线,垂足分别为E、F.AEDF为正方形.DE=DF,DB=DC∴RT△DEB≌RT△DFC∠EDB=∠FDC∴△BDC为等腰直角△.DM=BC/2=AM
应该是BG=CF吧?延长GE到点M,使EM=EF∵BE=CE,∠BEM=∠CEF∴△BEM≌△CEF∴∠F=∠M,BM=CF∵AD‖GE∴∠F=∠CAD,∠BGE=∠BAD∵∠CAD=∠BAD∴∠F=
连接AE则三角形AME和三角形DMEAM=DM
AD平分∠BAC.理由如下:∵AD垂直平分BC,∴BD=CD,∠ADB=∠ADC,AD=AD;∴△ADB≌△ADC(SAS).∴∠BAD=∠CAD,AD平分∠BAC望采纳o(∩_∩)o
证明:∵EF垂直平分AD∴⊿ADF是等腰三角形【若未学可根据AE=DE,∠AEF=∠DEF=90º,EF=EF证明⊿AEF≌⊿DEF(SAS),推出AF=DF,∠EAF=∠EDF】∴∠DAF
因为AD是BC的高线所以∠ADB=∠ADC=90°又因为AD=AD∠BAD=∠CAD所以△ABD和△ACD为全等三角形(ASA)则BD=CD即AD平分BC
延长BD,与AC交于点E∵∠BAD=∠EADAD=AD∠ADB=∠ADE=90°∴△ADB≌△ADE∴AE=AB=12BD=DE∵BM=CM∴DM=1/2EC∴EC=2DM=10故:AC=AE+CE=
因为AD平分角BAC所以角BAD=角DAC又因为D是BC中点所以BD=BC又因为AD是公共边所以三角形ABD全等于三角形ACD所以AB=AC
D是BC中点,∴ BD=DC∵ AB=AC AD=AD∴ △ABD≌△ACD (SSS)∴ ∠BAD=∠CAD&nb
证明:延长EM到G,使MG=EM,连接GC,∵MF∥AD,∴∠2=∠F,∠4=∠3,∵AD平分∠BAC,∴∠2=∠4,∵∠1=∠3,∴∠1=∠F,∵M是BC的中点,∴BM=CM,∵在△BEM和△CGM
M是中点,∴BM=MCAD平行EM∴角DAC=角E又∵AD是角平分线,∴角BAD=DAC∴角BAD=角E∵AD平行EMF点又在ME上∴F为AB中点又有角B=角A∴三角形BFM全等三角形EFA∴角B=角
延长BD交AC于点N.∵BD⊥AD,AD平分∠BAC,∴∠ADB=∠ADN=90°,∠BAD=∠NAD.在△ABD与△AND中, ∠ADB=∠ADNAD=AD∠BAD=∠NAD,∴△ABD≌
因为点M是RT△ABC的斜边AC的中点所以,MA=MC所以,∠MAC=∠C,延长DM交AC于点N,因为DM垂直平分BC,所以∠CMN=90度,∠MNC=90-∠C,∠D=∠MNC-∠DAN=∠MNC-
∵∠A=90°AD平分∠BAC∴∠BAM=∠MAC=45°∵DM⊥BC∴∠AMB=∠AMC=90°∵∠AMB为△AMC的外角,∠AMC为△AMB的外角∠AMB=∠AMC=90°∴∠B=45°,∠C=4
3楼方法是很好,但初中没学塞瓦定理.连接MD延长交AC于G,再延长DG到H,使DG=GH.因为MD分别为EC,BC的中点,所以MG//AE,所以G为AC中点,四边形AHCD为矩形.△ABH∽△MDHA
因为EF是AD的垂直平分线,所以∠FAD=∠FDA又因为∠FDA是三角形ADB的外角,所以∠FDA=∠DAB+∠B又因为∠FAD=∠FAC+∠CAD,∠DAB=∠CAD(AD是∠CAB的角平分线),所
(1)∵MF//AD∴∠N=∠BAD,∠CFM=∠CAD∵AD平分∠BAC∴∠BAD=∠CAD∴∠N=∠CFM=∠AFN∴AN=AF(2)∵AD平分∠BAC∴AB∶AC=BD∶CDBD∶CD=6∶10
作N关于AD的对称点为R,作AC边上的高BE(E在AC上),∵AD平分∠CAB,△ABC为锐角三角形,∴R必在AC上,∵N关于AD的对称点为R,∴MR=MN,∴BM+MN=BM+MR,即BM+MN=B