如图E.F分别是AB.AC的中点延长EF交∠ACD的平分线于点G,AG于CG
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:06:29
(1)∵DE∥BC,EF∥AB,∴∠AED=∠ECF,∠CEF=∠EAD.∴△ADE∽△EFC.(2)∵DE∥BC,EF∥AB,∴∠C=∠AED,∠FEC=∠A,∴△EFC∽△ADE,而S△ADE=2
(1)①②⇒③,正确;①③⇒②,错误,不符合三角形的判定;②③⇒①,正确.(2)先证①②⇒③.如图.∵AD平分∠BAC,DE⊥AB,DF⊥AC,AD=AD,∴Rt△ADE≌Rt△ADF.∴DE=DF,
取BC的中点为G.∵E、G分别是AC、BC的中点,∴EG是△CAB的中位线,∴EG∥AB、EG=(1/2)AB.∵F、G分别是BD、BC的中点,∴FG是△BCD的中位线,∴FG∥CD、FG=(1/2)
取BC的中点G,连接EG、FG∵E是AC的中点,G是BC的中点∴EG是△ABC的中位线∴EG∥AB,EF=AB/2∵AB=12∴EG=6∵F是BD的中点,G是BC的中点∴FG是△BCD的中位线∴FG∥
因为E,F,G分别是AC,BD,BC的中点所以EG=1/2ABFG=1/2DC又因为在三角形EFG中两边之差小于第三边所以EG-FG
作AG平行且等于CD,连接CG,则四边形AGCD是平行四边形.连DG,则DG比过E点.且DB=2DF,DG=2DE.所以BG=2EF.因为AD=CG,题目要求(BC-AD)=2EF,则是BC-CG=2
AB+FE+DC=AF+FB+FE+DC=AF+FE + FB+DC=AE+FB+DC=1/2(AC+AB+BC)=1/2(AC+AC)=AC
在三角形BCD中,F、G,分别是BC、CD的中点,所以BD//FG,所以BD//平面EFG;同理可证AC//EF,得AC//平面EFG
答:(1)四边形ADEF是平行四边形,因为EF与AB平行、DE与AC平行,所以是平行四边形.(2)角DEF是角BAC,角EDF是角ACB,角DFE是角ABC,因为角EDF与角AFD相等,角AFD与角A
过A、C作分别AG//CD、CG//AD;AG、CG相交于G;则得□AGCD=>AC、DG互相平分=>FD=DG=>EF为ΔDBG的中位线=>BG=2EF∵BG>AB-AG=AB-CD=>2EF>AB
/>证明:如图所示 (1)∵E、F、G、H分别是AB、AC、CD、DB的中点,∴EH、FG为△ADB、△ADC的中位线.∴EH=AD/2,FG=AD/2.∴EH=FG.(2)∵AB=AC,&
由题意,取BC边的中点G,连结EG、FG,则∵E、F、G分别是边BD、AC、BC的中点∴EG是△BCD的中位线,FG是△ABC的中位线∵EF+EG≥FG∴EF≥FG-EG=(1/2)(AB-CD)∴当
延长EF,交腰AD于P,BC于Q,∵E,F分别是AC,BD的中点,∴PQ是梯形ABCD的中位线,由△DAB,PF=1/2AB,∴PF=5,由△ACD,PE=1/2CD,∴PE=2,EF=PF-PE=5
取BC的中点P,连接PE、PF,∵E、F分别为BD、AC的中点,∴PE=1/2CD,PF=1/2AB,∵AB≠CD,∴PE+PF>EF,即1/2(AB+CD)>EF.
证明:将EF延长交边BC于G,因为AB‖CD,则EF‖CD‖AB,即EG‖AB,FG‖CD,而E、F点分别为AC和BD中点,则G点为BC中点,即EG=0.5*AB,FG=0.5*CD,则EF=EG-F
延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由
(1)①⊿ADE与⊿DEF不一定相似; ②△ADE与△ABC相似;③⊿ADE∽⊿DBF①证明(举反例):如图,DE∥BC,DF∥AC,显然,⊿ADE为锐角三角形,而⊿DEF为钝角三角形.可知
若添加AF=FC,已知DF∥BC,EF∥AB,得出∠ADF=∠ABC=∠FEC,∠AFD=∠C,可以根据AAS来判定其全等,同理添加DF=EC,或AD=FC,均可以利用AAS来判定其全等.
AB=AC,点E、F分别是AB、AC的中点所以EF‖BC且EF=1/2BC所以BO=2EO同理CO=2FO易证△FBC,△ECB全等所以∠FBC=∠EBC所以BO=OC=2EO=2FO由勾股定理EF&
D,E,F,分别是AB,BC,CA的中点DE和EF是三角形的中位线,DE=AC/2,DE‖AC,四边形ADEF是平行四边形,又AB=AC,AB/2=AC/2,DE=EF,∴四边形ADEF是菱形.