如图efgh分别是四边形abcd四边上的中点,四边形efgh是什么四边形为什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:00:49
如图在四边形ABCD中EFGH分别是ABCDACBD的中点求证四边形EGFH是平行四边形

∵△ABD中,E,H是AB和AD中点∴EH是△ABD的中位线∴EH‖BD,EH=1/2BD同理FG‖BD,FG=1/2BD∴EH‖FG,EH=FG∴平行四边形EHGF∴任意四边形的中点四边形的形状都是

如图,点E、F、G、H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形

四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形

已知如图:E、F、G、H分别是AB、BC、CD、CA的中点,求证:四边形EFGH是平行四边形.

额,赶不上节奏啊再问:楼上的看不懂,团长你能复述一遍吗?再答:GH是三角形DAC的中位线,所以GH=AC/2同理,EF是三角形BAC的中位线,所以EF=AC/2因此GH=EFEH是三角形ABD的中位线

如图,在四边形ABCD中,EFGH分别是AB BC CD DA的中点

证明:连接AC、BD因为EFGH是中点所以:EH=FG=1/2*BDHG=EF=1/2*AC(三角形中位线)对边分别相等,这个图形是平行四边形再问:我们还没学到中位线,可以用其他方法吗?再答:中三绝不

已知:如图,E,F,G,H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形

连接AC、BDH、G分别是AD、CD的中点,HG||ACE、F分别是AB、BC的中点,EF||AC故HG||EF同理,GF||BD,HE||BDGF||HE所以四边形EFGH是平行四边形.

如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?

设AD与HG的交点为M,由题意知,∵四边形EFGH是△ABC内接正方形,∴HG∥BC,∴△AHG∽△ABC,∴HGBC = AMAD,HG21 = 15−HG1

如图,已知EFGH分别是正方形各自所在边的的三等分点,如果正方形的面积是1平方厘米,那么四边形EFGH的面积是

很高兴为您解答,答案是九分之五这题不用想的很麻烦,因为都是三等分点,所以ae=三分之一af=三分之二利用割补法,总面积剪空白,即可求出答案.1-4x九分之一=九分之五

如图,已知e、f、g,h分别是ab、bd,cd,ca,的中点,求证:四边形efgh是平行四边形

连接AD,在三角形ABD中,EF是中线所以EF平行AD且EF=AD/2同理在三角形ACD中,HG是中线HG平行AD且HG=AD/2所以EF平行HG且EF=HG所以EFGH是平行四边形

如图,点E,F,G,H分别是CD,BC,AB,DA的中点.求证:四边形EFGH是平行四边形.

连接AC,BD∵E,H,F,G是中点∴EH是△DAC的中位线∴EH//AC同理GF//AC∴GF//EH同理EF//HG∴四边形EHGF是平行四边形

已知:如图,矩形ABCD的外角平分线分别交于点EFGH.求证:四边形EFGH是正方形

证明:∵矩形的ABCD的外角都是直角,HE,EF都是外角平分线,∴∠BAE=∠ABE=45°.∴∠E=90°.同理,∠F=∠G=90°.∴四边形EFGH为矩形.∵AD=BC,∠HAD=∠HDA=∠FB

如图,已知E,F,G,H分别是四边形ABCD的各点的中点,则四边形EFGH是什么四边形?

如果是矩形,则变成菱形;如果是菱形,则变成长方形;如果是正方形,则还是正方形

如图,点E,F,G,H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形?

答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以

如图E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )

联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以

如图,依次连接任意四边形ABCD中点,得到四边形EFGH,证明四边形EFGH是平行四边形!过程!

顺次连接E、F、G、H因为AB、BC、CD、AD的中点分别是E、F、G、H,所以EF、GH分别是是三角形ABC和ADC的中位线根据中位线性质得:EF//AC,EF=AC/2,GH//AC,GH=AC/

如图,矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,连接EFGH,四边形EFGH是什么四边形?说明理

证明:四边形EFGH是菱形.连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的

如图,平行四边形ABCD各内角的角平分线分别相交于EFGH,试说明四边形EFGH是矩形.

如图,角A,B,C,D,的角平分线交平行四边形各边为K,L,M,N.角KAD=角AKB=角BCM,所以,AK//CM,同理,BL//DN,所以四边形EFGH为平行四边形.又角ADC+角BCD=180度

如图,四边形ABCD上的中点分别是E.F.G.H,求证:四边形EFGH是平行四边形.

不妨设E,F,G,H分别是AB,BC,CD,DA中点连接AC,根据三角形中位线定理,EF=1/2AC,GH=1/2AC所以EF=GH同理EG=FH所以四边形EFGH是平行四边形(两组对边相等)

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应

条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD

如图,四边形EFGH是△ABC内接正方形,BC=27cm,高AD=21cm,求内接正方形EFGH的面积.

设正方形EFGH的边长为x,设AD与GH的交点为I,∵HG∥BC,∴△AHG∽△ABC,∴AI:AD=GH:BC,正方形EFGH的边长为xcm.∵BC=27,AD=21,∴(21-x):21=x:27