如图七,在三角形ABC中,AB=AC,点D在边AC上,AD=BD=DE,联结DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:35:02
在三角形ABC中,BD垂直AC,CE垂直AB,求证:三角形ADE相似于三角形ABC

证明:因BD⊥AC,CE⊥AB,所以∠ADB=∠AEC=90°,因∠BAD=∠CAE,所以△ABD∽△ACE所以AD/AB=AE/AC又∠A=∠A所以△ADE∽△ABC

在三角形ABC和三角形EDF中,D,E,F分别是三角形ABC的三边BC,CA,AB的中点,求三角形DEF相似三角形ABC

证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.

在三角形ABC中,若向量AB*向量BC+向量AB的平方=0,则三角形ABC是什么三角形?

向量AB*向量BC+向量AB的平方=0向AB(向BC+向AB)=0向AB·向AC=0三角形ABC是直角三角形

在三角形三角形ABC中,AB=AC

(1)角BAD=40,则角EDC=20角BAD=30则角EDC=15度(2)角EDC=1/2角BAD(3)同样存在.证明如下:设角BAD=x,角ABC=y则角DAC=180-2y-x等腰三角形ADE,

勾股定理: 在三角形ABC中,BC=28,AB=25,AB=17,则三角形ABC的面积是多少?

A²D=AD²,还真是第一次看见这种写法,难道是新课标的新记法吗?总之,根据答案,这里应该是:AB²-BD²=AC²-CD²=AD²

如图所示,已知在三角形ABC中,AB

AC=AE+CE=8,因为DE垂直平分BC,所以BE=CE所以AE+BE=8ABE周长为AE+BE+AB=14AB=6

在三角形ABC中,AB=AC,

证明:因为AB=AC,所以三角形ABC是等腰三角形;由

在三角形ABC中,AC=AB,过三角形ABC的一个顶点的一条直线把三角形ABC分成的两个三角形都是等腰三角形,三角形AB

45,45,9036,36,10830,30,120180/7,540/7,540/7其实你只要画图,然后根据三个等腰三角形的关系以及三角形内角和定理就很容易的看出来了.

在三角形ABC中,ab=ac,将三角形abc绕点a沿顺时针方向旋转得三角形ab1c1,

AB1//CB∵AC1=AC∴∠C=∠C1∴∠CAC1=∠ABC∴∠B1AC=∠B1AC1+∠C1AC=∠BAC+∠C1AC=∠ABC+∠BAC∴∠B1AC+∠ACB=∠ABC+∠BAC+∠ACB=1

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

如图,在三角形ABC中AB=AC

解1:因AB是员直径,所以角ADB=90,即AD垂直于BC.因AB=AC,且AD垂直BC,AO=DO,所以角CAD=角BAD=角ADO.因AC垂直EF,因此角CAD+角ADE=角AED=90又因CAD

如图在三角形abc中ab等于ac.

(1)原题应该是问ab平方-ap平方=pb*pb吧?证:abc是等腰三角形,p是bc中点,可知pb=pc,ap⊥bc又勾股定理ab^2-ap^2=pb^2=pb*pc,得证.(2)成立.过a做bc垂线

在三角形ABC中,AB

你确定你的条件都写了吗,我咋感觉少个条件

三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC

在三角形ABC中,

已知,AD=AC,BE=BC,可得:∠ADC=∠ACD,∠BEC=∠BCE,即有:∠EDC=∠ACD=∠ACE+∠ECD,∠DEC=∠BCE=∠BCD+∠ECD,∠ECD=180°-(∠EDC+∠DE

如图,在三角形ABC中,AB=AC,

因为AB=AC,角A=36度所以角ABC=角ACB=72度因为CD平分角ACB所以角BCD=角DCA=36度因为角A=36度所以角BCD=角A因为角DBC=角ABC所以三角形CDB相似于三角形ABC所

在三角形ABC中

解题思路:根据题意,由正弦定理和余弦定理可求解题过程:见附件最终答案:略

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC